IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v145y2021ics0960077921001053.html
   My bibliography  Save this article

The analysis of the dynamic optimization problem in econophysics from the point of view of the symplectic approach for constrained systems

Author

Listed:
  • Godinho, Cresus F.L.
  • Abreu, Everton M.C.

Abstract

A standard approach to deal with the problems relative to dynamic optimization is the well known Pontryagin method to obtain a concise condition for an optimal control, minimizing the cost functional. In this paper we have proposed a simpler dynamic optimization procedure through a so-called symplectic algorithm. We worked with the analogy between the physical systems at the classical and quantum energy levels. In this way, we started by considering some cost functional f(q,u,t), where q and u are state and control variables, respectively. We have shown that it is possible to investigate the system by means of a symplectic extension, where we can reduce any constrained system into its canonical first order form. Consequently, the dynamics of evolution, usually governed by Dirac’s constraint method, was re-obtained here in a very elegant way. On the other hand, the constraints classification turned out to be different from the one used in Dirac’s procedure. Of course, our analysis is valid for unconstrained systems where the Pontryagin equations are valid too. Four optimization problems were solved.

Suggested Citation

  • Godinho, Cresus F.L. & Abreu, Everton M.C., 2021. "The analysis of the dynamic optimization problem in econophysics from the point of view of the symplectic approach for constrained systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001053
    DOI: 10.1016/j.chaos.2021.110752
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo, 2017. "Dynamic optimization and its relation to classical and quantum constrained systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 12-25.
    2. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    3. Jannett Highfill & Michael McAsey, 1991. "An optimal control problem in economics," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 14, pages 1-8, January.
    4. W.-X. Zhou & D. Sornette, 2007. "Self-organizing Ising model of financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 175-181, January.
    5. McCauley, Joseph & Roehner, Bertrand & Stanley, Eugene & Schinckus, Christophe, 2016. "Editorial: The 20th anniversary of econophysics: Where we are and where we are going," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 267-269.
    6. Chao Zhang & Lu Huang, 2010. "A quantum model for the stock market," Papers 1009.4843, arXiv.org, revised Oct 2010.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liviu-Adrian Cotfas, 2012. "A quantum mechanical model for the rate of return," Papers 1211.1938, arXiv.org.
    2. Bikramaditya Ghosh & Krishna MC, 2020. "Econophysical bourse volatility – Global Evidence," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 9(2), pages 87-107.
    3. Gao, Tingting & Chen, Yu, 2017. "A quantum anharmonic oscillator model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 307-314.
    4. Liviu-Adrian Cotfas, 2012. "A finite-dimensional quantum model for the stock market," Papers 1204.4614, arXiv.org, revised Sep 2012.
    5. Jack Sarkissian, 2016. "Quantum theory of securities price formation in financial markets," Papers 1605.04948, arXiv.org, revised May 2016.
    6. Pedram, Pouria, 2012. "The minimal length uncertainty and the quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2100-2105.
    7. Jack Sarkissian, 2016. "Spread, volatility, and volume relationship in financial markets and market making profit optimization," Papers 1606.07381, arXiv.org.
    8. Kumar, Sushil & Kumar, Sunil & Kumar, Pawan, 2020. "Diffusion entropy analysis and random matrix analysis of the Indian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    9. Yaghobipour, S. & Yarahmadi, M., 2018. "Optimal control design for a class of quantum stochastic systems with financial applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 507-522.
    10. Liviu-Adrian Cotfas, 2012. "Finite quantum mechanical model for the stock market," Papers 1208.6146, arXiv.org, revised Sep 2012.
    11. Xiangyi Meng & Jian-Wei Zhang & Jingjing Xu & Hong Guo, 2014. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Papers 1405.4490, arXiv.org.
    12. Jasmina Jekni'c-Dugi'c & Sonja Radi' c & Igor Petrovi'c & Momir Arsenijevi'c & Miroljub Dugi'c, 2018. "Quantum Brownian oscillator for the stock market," Papers 1901.10544, arXiv.org.
    13. Kuzu, Erkan & Süsay, Aynur & Tanrıöven, Cihan, 2022. "A model study for calculation of the temperatures of major stock markets in the world with the quantum simulation and determination of the crisis periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    14. Pineiro-Chousa, Juan & Vizcaíno-González, Marcos, 2016. "A quantum derivation of a reputational risk premium," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 304-309.
    15. Meng, Xiangyi & Zhang, Jian-Wei & Guo, Hong, 2016. "Quantum Brownian motion model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 281-288.
    16. Pouria Pedram, 2011. "The minimal length uncertainty and the quantum model for the stock market," Papers 1111.6859, arXiv.org, revised Jan 2012.
    17. Cotfas, Liviu-Adrian, 2013. "A finite-dimensional quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 371-380.
    18. Meng, Xiangyi & Zhang, Jian-Wei & Xu, Jingjing & Guo, Hong, 2015. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 154-160.
    19. Wang, Yougui & Stanley, H.E., 2009. "Statistical approach to partial equilibrium analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1173-1180.
    20. Bahrami, Mohammad & Chinichian, Narges & Hosseiny, Ali & Jafari, Gholamreza & Ausloos, Marcel, 2020. "Optimization of the post-crisis recovery plans in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.