IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-04221-9.html
   My bibliography  Save this article

Modeling the tail risk of crude oil futures using a quantum approach

Author

Listed:
  • Minhyuk Jeong

    (Yonsei University
    Yonsei University)

  • Kwangwon Ahn

    (Yonsei University
    Yonsei University)

Abstract

This study proposes a quantum approach to measure the tail risk of crude oil futures. Based on the quantum harmonic oscillator (QHO) model, we first model the log return process of crude oil futures. From the equilibrium distribution of QHO model, we calculate the well-known tail risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES); we confirm that this quantum approach provides precise estimates of in-sample and out-of-sample VaR and ES for crude oil futures. The findings suggest the QHO model for log return process outperforms the geometric Brownian motion for price process and the historical simulation approach. The excellence of QHO model in explaining the tail risk of crude oil futures can be attributed to its fast angular frequency and high probability allocation in excited states. Crude oil market participants can use this study’s analytical framework to precisely measure and manage potential risks in the marketplace. Regulatory authorities can evaluate the degree of crude oil market instability through the current market state of crude oil futures characterized by the QHO model parameters while devising and revising crude oil market regulations. Future research can examine quantum models with (1) different assumptions, e.g., position-dependent diffusion and time-varying equilibrium return, and (2) different potential functions, e.g., infinite and finite square well.

Suggested Citation

  • Minhyuk Jeong & Kwangwon Ahn, 2024. "Modeling the tail risk of crude oil futures using a quantum approach," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-04221-9
    DOI: 10.1057/s41599-024-04221-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-04221-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-04221-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.
    2. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    3. Sun, Jie & Zhao, Xiaojun & Xu, Chao, 2021. "Crude oil market autocorrelation: Evidence from multiscale quantile regression analysis," Energy Economics, Elsevier, vol. 98(C).
    4. Yu, Wenhua & Yang, Kun & Wei, Yu & Lei, Likun, 2018. "Measuring Value-at-Risk and Expected Shortfall of crude oil portfolio using extreme value theory and vine copula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1423-1433.
    5. Chao Zhang & Lu Huang, 2010. "A quantum model for the stock market," Papers 1009.4843, arXiv.org, revised Oct 2010.
    6. Patra, Saswat, 2021. "Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions," Energy Economics, Elsevier, vol. 101(C).
    7. Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
    8. Cotfas, Liviu-Adrian, 2013. "A finite-dimensional quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 371-380.
    9. Youssef, Manel & Belkacem, Lotfi & Mokni, Khaled, 2015. "Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach," Energy Economics, Elsevier, vol. 51(C), pages 99-110.
    10. Zaichao Du & Juan Carlos Escanciano, 2017. "Backtesting Expected Shortfall: Accounting for Tail Risk," Management Science, INFORMS, vol. 63(4), pages 940-958, April.
    11. Hyeonoh Kim & Eojin Yi & Jooyoung Jeon & Taeyoung Park & Kwangwon Ahn, 2024. "After the Split: Market Efficiency of Bitcoin Cash," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 411-427, July.
    12. Meng, Xiangyi & Zhang, Jian-Wei & Guo, Hong, 2016. "Quantum Brownian motion model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 281-288.
    13. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
    2. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    3. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    4. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    5. Onder Buberkoku, 2018. "Examining the Value-at-risk Performance of Fractionally Integrated GARCH Models: Evidence from Energy Commodities," International Journal of Economics and Financial Issues, Econjournals, vol. 8(3), pages 36-50.
    6. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    7. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    8. Gao, Tingting & Chen, Yu, 2017. "A quantum anharmonic oscillator model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 307-314.
    9. Bei, Shuhua & Yang, Aijun & Pei, Haotian & Si, Xiaoli, 2023. "Price Risk Analysis using GARCH Family Models: Evidence from Shanghai Crude Oil Futures Market," Economic Modelling, Elsevier, vol. 125(C).
    10. Zhao, Lu-Tao & Wang, Dai-Song & Ren, Zhong-Yuan, 2024. "The impact of joint events on oil price volatility: Evidence from a dynamic graphical news analysis model," Economic Modelling, Elsevier, vol. 130(C).
    11. Chai, Shanglei & Zhou, P., 2018. "The Minimum-CVaR strategy with semi-parametric estimation in carbon market hedging problems," Energy Economics, Elsevier, vol. 76(C), pages 64-75.
    12. Luca Merlo & Lea Petrella & Valentina Raponi, 2021. "Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation," Papers 2106.06518, arXiv.org.
    13. Timo Dimitriadis & iaochun Liu & Julie Schnaitmann, 2023. "Encompassing Tests for Value at Risk and Expected Shortfall Multistep Forecasts Based on Inference on the Boundary," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 412-444.
    14. repec:ipg:wpaper:2013-009 is not listed on IDEAS
    15. Zou, Yingchao & Yu, Lean & Tso, Geoffrey K.F. & He, Kaijian, 2020. "Risk forecasting in the crude oil market: A multiscale Convolutional Neural Network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    16. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    17. Zi-Yi Guo & Yangxiaoteng Luo, 2017. "Dynamic Stochastic Factors, Risk Management and the Energy Futures," International Business Research, Canadian Center of Science and Education, vol. 10(9), pages 50-59, September.
    18. Hemei Li & Zhenya Liu & Shixuan Wang, 2022. "Vines climbing higher: Risk management for commodity futures markets using a regular vine copula approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2438-2457, April.
    19. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    20. Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
    21. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-04221-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.