IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1206.3390.html
   My bibliography  Save this paper

State-independent Importance Sampling for Random Walks with Regularly Varying Increments

Author

Listed:
  • Karthyek R. A. Murthy
  • Sandeep Juneja
  • Jose Blanchet

Abstract

We develop importance sampling based efficient simulation techniques for three commonly encountered rare event probabilities associated with random walks having i.i.d. regularly varying increments; namely, 1) the large deviation probabilities, 2) the level crossing probabilities, and 3) the level crossing probabilities within a regenerative cycle. Exponential twisting based state-independent methods, which are effective in efficiently estimating these probabilities for light-tailed increments are not applicable when the increments are heavy-tailed. To address the latter case, more complex and elegant state-dependent efficient simulation algorithms have been developed in the literature over the last few years. We propose that by suitably decomposing these rare event probabilities into a dominant and further residual components, simpler state-independent importance sampling algorithms can be devised for each component resulting in composite unbiased estimators with desirable efficiency properties. When the increments have infinite variance, there is an added complexity in estimating the level crossing probabilities as even the well known zero-variance measures have an infinite expected termination time. We adapt our algorithms so that this expectation is finite while the estimators remain strongly efficient. Numerically, the proposed estimators perform at least as well, and sometimes substantially better than the existing state-dependent estimators in the literature.

Suggested Citation

  • Karthyek R. A. Murthy & Sandeep Juneja & Jose Blanchet, 2012. "State-independent Importance Sampling for Random Walks with Regularly Varying Increments," Papers 1206.3390, arXiv.org, revised Sep 2014.
  • Handle: RePEc:arx:papers:1206.3390
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1206.3390
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Glasserman & Sandeep Juneja, 2008. "Uniformly Efficient Importance Sampling for the Tail Distribution of Sums of Random Variables," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 36-50, February.
    2. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    3. Achal Bassamboo & Sandeep Juneja & Assaf Zeevi, 2008. "Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation," Operations Research, INFORMS, vol. 56(3), pages 593-606, June.
    4. Asmussen, S. & Binswanger, K., 1997. "Simulation of Ruin Probabilities for Subexponential Claims," ASTIN Bulletin, Cambridge University Press, vol. 27(2), pages 297-318, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua Chan & Dirk Kroese, 2011. "Rare-event probability estimation with conditional Monte Carlo," Annals of Operations Research, Springer, vol. 189(1), pages 43-61, September.
    2. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    3. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.
    4. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    5. Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
    6. Sunggon Kim & Jisu Yu, 2023. "Stratified importance sampling for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 322(2), pages 819-849, March.
    7. Tim J. Brereton & Dirk P. Kroese & Joshua C. Chan, 2012. "Monte Carlo Methods for Portfolio Credit Risk," ANU Working Papers in Economics and Econometrics 2012-579, Australian National University, College of Business and Economics, School of Economics.
    8. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    9. Cheng-Der Fuh & Chuan-Ju Wang, 2017. "Efficient Exponential Tilting for Portfolio Credit Risk," Papers 1711.03744, arXiv.org, revised Apr 2019.
    10. Anand Deo & Sandeep Juneja, 2019. "Credit Risk: Simple Closed Form Approximate Maximum Likelihood Estimator," Papers 1912.12611, arXiv.org.
    11. Tang, Qihe & Tang, Zhaofeng & Yang, Yang, 2019. "Sharp asymptotics for large portfolio losses under extreme risks," European Journal of Operational Research, Elsevier, vol. 276(2), pages 710-722.
    12. Rongda Chen & Ze Wang & Lean Yu, 2017. "Importance Sampling for Credit Portfolio Risk with Risk Factors Having t-Copula," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1101-1124, July.
    13. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    14. Huei-Wen Teng, 2023. "Importance Sampling for Calculating the Value-at-Risk and Expected Shortfall of the Quadratic Portfolio with t-Distributed Risk Factors," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1125-1154, October.
    15. Hsieh, Ming-Hua & Lee, Yi-Hsi & Shyu, So-De & Chiu, Yu-Fen, 2019. "Estimating multifactor portfolio credit risk: A variance reduction approach," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    16. Chan, Joshua C.C. & Kroese, Dirk P., 2010. "Efficient estimation of large portfolio loss probabilities in t-copula models," European Journal of Operational Research, Elsevier, vol. 205(2), pages 361-367, September.
    17. Avramidis, Panagiotis & Pasiouras, Fotios, 2015. "Calculating systemic risk capital: A factor model approach," Journal of Financial Stability, Elsevier, vol. 16(C), pages 138-150.
    18. Konstantinos Spiliopoulos, 2014. "Systemic Risk and Default Clustering for Large Financial Systems," Papers 1402.5352, arXiv.org, revised Feb 2015.
    19. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    20. Erik Hintz & Marius Hofert & Christiane Lemieux & Yoshihiro Taniguchi, 2022. "Single-Index Importance Sampling with Stratification," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3049-3073, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1206.3390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.