IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v56y2008i3p593-606.html
   My bibliography  Save this article

Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation

Author

Listed:
  • Achal Bassamboo

    (Department of Managerial Economics and Decision Sciences, Kellogg School of Management, Northwestern University, Evanston, Illinois 60208)

  • Sandeep Juneja

    (Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400005, India)

  • Assaf Zeevi

    (Graduate School of Business, Columbia University, New York, New York 10027)

Abstract

We consider the risk of a portfolio comprising loans, bonds, and financial instruments that are subject to possible default. In particular, we are interested in performance measures such as the probability that the portfolio incurs large losses over a fixed time horizon, and the expected excess loss given that large losses are incurred during this horizon. Contrary to the normal copula that is commonly used in practice (e.g., in the CreditMetrics system), we assume a portfolio dependence structure that is semiparametric, does not hinge solely on correlation, and supports extremal dependence among obligors. A particular instance within the proposed class of models is the so-called t -copula model that is derived from the multivariate Student t distribution and hence generalizes the normal copula model. The size of the portfolio, the heterogeneous mix of obligors, and the fact that default events are rare and mutually dependent make it quite complicated to calculate portfolio credit risk either by means of exact analysis or naïve Monte Carlo simulation. The main contributions of this paper are twofold. We first derive sharp asymptotics for portfolio credit risk that illustrate the implications of extremal dependence among obligors. Using this as a stepping stone, we develop importance-sampling algorithms that are shown to be asymptotically optimal and can be used to efficiently compute portfolio credit risk via Monte Carlo simulation.

Suggested Citation

  • Achal Bassamboo & Sandeep Juneja & Assaf Zeevi, 2008. "Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation," Operations Research, INFORMS, vol. 56(3), pages 593-606, June.
  • Handle: RePEc:inm:oropre:v:56:y:2008:i:3:p:593-606
    DOI: 10.1287/opre.1080.0513
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1080.0513
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1080.0513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    2. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    3. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kern, Markus & Rudolph, Bernd, 2001. "Comparative analysis of alternative credit risk models: An application on German middle market loan portfolios," CFS Working Paper Series 2001/03, Center for Financial Studies (CFS).
    2. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    3. Christian Gouriéroux & Alain Monfort, 2017. "Composite Indirect Inference with Application," Working Papers 2017-07, Center for Research in Economics and Statistics.
    4. Berry K. Wilson & John T. Donnellan, 2016. "The Technology of Ratings Then and Now; Hiding in Plain Sight," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 25(1), pages 49-74, January.
    5. repec:onb:oenbwp:y:2002:i:3:b:3 is not listed on IDEAS
    6. Ephraim Clark & Geeta Lakshmi, 2003. "Controlling the risk: a case study of the Indian liquidity crisis 1990-92," Journal of International Development, John Wiley & Sons, Ltd., vol. 15(3), pages 285-298.
    7. Meng-Jou Lu & Cathy Yi-Hsuan Chen & Wolfgang Karl Härdle, 2017. "Copula-based factor model for credit risk analysis," Review of Quantitative Finance and Accounting, Springer, vol. 49(4), pages 949-971, November.
    8. Byström, Hans, 2017. "The currency composition of firms' balance sheets, asset value correlations, and capital requirements," Global Finance Journal, Elsevier, vol. 34(C), pages 89-99.
    9. Correa, Arnildo & Marins, Jaqueline & Neves, Myrian & da Silva, Antonio Carlos, 2014. "Credit Default and Business Cycles: An Empirical Investigation of Brazilian Retail Loans," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(3), September.
    10. Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
    11. Andreas Muhlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Papers 1803.00261, arXiv.org.
    12. Joachim Sicking & Thomas Guhr & Rudi Schäfer, 2018. "Concurrent credit portfolio losses," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
    13. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    14. Giulio Bottazzi & Marco Grazzi & Angelo Secchi & Federico Tamagni, 2011. "Financial and economic determinants of firm default," Journal of Evolutionary Economics, Springer, vol. 21(3), pages 373-406, August.
    15. Bonfim, Diana, 2009. "Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 281-299, February.
    16. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    17. Maclachlan, Iain C, 2007. "An empirical study of corporate bond pricing with unobserved capital structure dynamics," MPRA Paper 28416, University Library of Munich, Germany.
    18. Hulusi Inanoglu & Michael Jacobs, 2009. "Models for Risk Aggregation and Sensitivity Analysis: An Application to Bank Economic Capital," JRFM, MDPI, vol. 2(1), pages 1-72, December.
    19. Abinzano, Isabel & Gonzalez-Urteaga, Ana & Muga, Luis & Sanchez, Santiago, 2020. "Performance of default-risk measures: the sample matters," Journal of Banking & Finance, Elsevier, vol. 120(C).
    20. Zhang, Xi & Li, Jian, 2018. "Credit and market risks measurement in carbon financing for Chinese banks," Energy Economics, Elsevier, vol. 76(C), pages 549-557.
    21. International Association of Deposit Insurers, 2011. "Evaluation of Deposit Insurance Fund Sufficiency on the Basis of Risk Analysis," IADI Research Papers 11-11, International Association of Deposit Insurers.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:56:y:2008:i:3:p:593-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.