IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1203.4156.html
   My bibliography  Save this paper

Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio Approach

Author

Listed:
  • Sait Tunc
  • Suleyman S. Kozat

Abstract

We study optimal investment in a financial market having a finite number of assets from a signal processing perspective. We investigate how an investor should distribute capital over these assets and when he should reallocate the distribution of the funds over these assets to maximize the cumulative wealth over any investment period. In particular, we introduce a portfolio selection algorithm that maximizes the expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies proportional transaction costs in buying and selling stocks. We achieve this using "threshold rebalanced portfolios", where trading occurs only if the portfolio breaches certain thresholds. Under the assumption that the relative price sequences have log-normal distribution from the Black-Scholes model, we evaluate the expected wealth under proportional transaction costs and find the threshold rebalanced portfolio that achieves the maximal expected cumulative wealth over any investment period. Our derivations can be readily extended to markets having more than two stocks, where these extensions are pointed out in the paper. As predicted from our derivations, we significantly improve the achieved wealth over portfolio selection algorithms from the literature on historical data sets.

Suggested Citation

  • Sait Tunc & Suleyman S. Kozat, 2012. "Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio Approach," Papers 1203.4156, arXiv.org.
  • Handle: RePEc:arx:papers:1203.4156
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1203.4156
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Taksar & Michael J. Klass & David Assaf, 1988. "A Diffusion Model for Optimal Portfolio Selection in the Presence of Brokerage Fees," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 277-294, May.
    2. Garud Iyengar, 2005. "Universal Investment In Markets With Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 359-371, April.
    3. David P. Helmbold & Robert E. Schapire & Yoram Singer & Manfred K. Warmuth, 1998. "On‐Line Portfolio Selection Using Multiplicative Updates," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 325-347, October.
    4. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    5. Magill, Michael J. P. & Constantinides, George M., 1976. "Portfolio selection with transactions costs," Journal of Economic Theory, Elsevier, vol. 13(2), pages 245-263, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fotis Papailias & Dimitrios Thomakos, 2015. "Covariance averaging for improved estimation and portfolio allocation," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 29(1), pages 31-59, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    2. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    3. Irle, Albrecht & Prelle, Claas, 2008. "A renewal theoretic result in portfolio theory under transaction costs with multiple risky assets," Kiel Working Papers 1449, Kiel Institute for the World Economy (IfW Kiel).
    4. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    5. Changhui Choi & Bong-Gyu Jang & Changki Kim & Sang-youn Roh, 2016. "Net Contribution, Liquidity, and Optimal Pension Management," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(4), pages 913-948, December.
    6. Jörn Sass & Manfred Schäl, 2014. "Numeraire portfolios and utility-based price systems under proportional transaction costs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 195-234, October.
    7. Yaroslav Melnyk & Frank Thomas Seifried, 2018. "Small†cost asymptotics for long†term growth rates in incomplete markets," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 668-711, April.
    8. Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2020. "Extended weak convergence and utility maximisation with proportional transaction costs," Finance and Stochastics, Springer, vol. 24(4), pages 1013-1034, October.
    9. Paolo Guasoni & Johannes Muhle-Karbe, 2012. "Portfolio Choice with Transaction Costs: a User's Guide," Papers 1207.7330, arXiv.org.
    10. Soren Christensen & Albrecht Irle & Andreas Ludwig, 2016. "Optimal portfolio selection under vanishing fixed transaction costs," Papers 1611.01280, arXiv.org, revised Jul 2017.
    11. Irle Albrecht & Prelle Claas, 2009. "A renewal theoretic result in portfolio theory under transaction costs with multiple risky assets," Statistics & Risk Modeling, De Gruyter, vol. 27(3), pages 211-233, December.
    12. Muthuraman, Kumar, 2007. "A computational scheme for optimal investment - consumption with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1132-1159, April.
    13. Christian Bayer & Bezirgen Veliyev, 2014. "Utility Maximization In A Binomial Model With Transaction Costs: A Duality Approach Based On The Shadow Price Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-27.
    14. Stefan Gerhold & Paolo Guasoni & Johannes Muhle-Karbe & Walter Schachermayer, 2011. "Transaction Costs, Trading Volume, and the Liquidity Premium," Papers 1108.1167, arXiv.org, revised Jan 2013.
    15. Yingting Miao & Qiang Zhang, 2023. "Optimal Investment and Consumption Strategies with General and Linear Transaction Costs under CRRA Utility," Papers 2304.07672, arXiv.org.
    16. Kumar Muthuraman & Haining Zha, 2008. "Simulation‐Based Portfolio Optimization For Large Portfolios With Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 115-134, January.
    17. Bin Li & Steven C. H. Hoi, 2012. "Online Portfolio Selection: A Survey," Papers 1212.2129, arXiv.org, revised May 2013.
    18. Akian, Marianne & Menaldi, Jose Luis & Sulem, Agnès, 1995. "Multi-asset portfolio selection problem with transaction costs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 38(1), pages 163-172.
    19. Thomas Breuer & Martin Jandačka, 2008. "Portfolio selection with transaction costs under expected shortfall constraints," Computational Management Science, Springer, vol. 5(4), pages 305-316, October.
    20. Min Dai & Zuo Quan Xu & Xun Yu Zhou, 2009. "Continuous-Time Markowitz's Model with Transaction Costs," Papers 0906.0678, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1203.4156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.