IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1203.2369.html
   My bibliography  Save this paper

Counterparty Risk Valuation: A Marked Branching Diffusion Approach

Author

Listed:
  • Pierre Henry-Labordere

    (SOCIETE GENERALE)

Abstract

The purpose of this paper is to design an algorithm for the computation of the counterparty risk which is competitive in regards of a brute force "Monte-Carlo of Monte-Carlo" method (with nested simulations). This is achieved using marked branching diffusions describing a Galton-Watson random tree. Such an algorithm leads at the same time to a computation of the (bilateral) counterparty risk when we use the default-risky or counterparty-riskless option values as mark-to-market. Our method is illustrated by various numerical examples.

Suggested Citation

  • Pierre Henry-Labordere, 2012. "Counterparty Risk Valuation: A Marked Branching Diffusion Approach," Papers 1203.2369, arXiv.org.
  • Handle: RePEc:arx:papers:1203.2369
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1203.2369
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/5524 is not listed on IDEAS
    2. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    3. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S'ebastien Geeraert & Charles-Albert Lehalle & Barak Pearlmutter & Olivier Pironneau & Adil Reghai, 2017. "Mini-symposium on automatic differentiation and its applications in the financial industry," Papers 1703.02311, arXiv.org, revised Jun 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    2. Rutger-Jan Lange & Coen N. Teulings, 2021. "The option value of vacant land: Don't build when demand for housing is booming," Tinbergen Institute Discussion Papers 21-022/IV, Tinbergen Institute.
    3. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.
    4. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    5. Beveridge, Christopher & Joshi, Mark & Tang, Robert, 2013. "Practical policy iteration: Generic methods for obtaining rapid and tight bounds for Bermudan exotic derivatives using Monte Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1342-1361.
    6. Rutger-Jan Lange & Coen Teulings, 2018. "The option value of vacant land and the optimal timing of city extensions," Tinbergen Institute Discussion Papers 18-033/III, Tinbergen Institute.
    7. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    8. Helin Zhu & Fan Ye & Enlu Zhou, 2013. "Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes," Papers 1305.4321, arXiv.org.
    9. David Hobson & Anthony Neuberger, 2016. "On the value of being American," Papers 1604.02269, arXiv.org.
    10. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    11. Lokeshwar, Vikranth & Bharadwaj, Vikram & Jain, Shashi, 2022. "Explainable neural network for pricing and universal static hedging of contingent claims," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    12. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    13. Yi Yang & Jianan Wang & Youhua Chen & Zhiyuan Chen & Yanchu Liu, 2020. "Optimal procurement strategies for contractual assembly systems with fluctuating procurement price," Annals of Operations Research, Springer, vol. 291(1), pages 1027-1059, August.
    14. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    15. Pierre Henry-Labordere, 2012. "Counterparty Risk Valuation: A Marked Branching Diffusion Approach," Working Papers hal-00677348, HAL.
    16. David B. Brown & James E. Smith, 2013. "Optimal Sequential Exploration: Bandits, Clairvoyants, and Wildcats," Operations Research, INFORMS, vol. 61(3), pages 644-665, June.
    17. Louis Bhim & Reiichiro Kawai, 2018. "Smooth Upper Bounds For The Price Function Of American Style Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-38, February.
    18. Lukas Gonon, 2024. "Deep neural network expressivity for optimal stopping problems," Finance and Stochastics, Springer, vol. 28(3), pages 865-910, July.
    19. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Pathwise Optimization for Optimal Stopping Problems," Management Science, INFORMS, vol. 58(12), pages 2292-2308, December.
    20. Christian Bender & Nikolaus Schweizer & Jia Zhuo, 2013. "A primal-dual algorithm for BSDEs," Papers 1310.3694, arXiv.org, revised Sep 2014.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1203.2369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.