IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1203.0599.html
   My bibliography  Save this paper

Implied volatility formula of European Power Option Pricing

Author

Listed:
  • Jingwei Liu
  • Xing Chen

Abstract

We derive the implied volatility estimation formula in European power call options pricing, where the payoff functions are in the form of $V=(S^{\alpha}_T-K)^{+}$ and $V=(S^{\alpha}_T-K^{\alpha})^{+}$ ($\alpha>0$)respectively. Using quadratic Taylor approximations, We develop the computing formula of implied volatility in European power call option and extend the traditional implied volatility formula of Charles J.Corrado, et al (1996) to general power option pricing. And the Monte-Carlo simulations are also given.

Suggested Citation

  • Jingwei Liu & Xing Chen, 2012. "Implied volatility formula of European Power Option Pricing," Papers 1203.0599, arXiv.org.
  • Handle: RePEc:arx:papers:1203.0599
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1203.0599
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Corrado, Charles J. & Miller, Thomas Jr., 1996. "A note on a simple, accurate formula to compute implied standard deviations," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 595-603, April.
    3. Chaudhury, Mohammed M, 1989. "An Approximately Unbiased Estimator for the Theoretical Black-Scholes European Call Valuation," Bulletin of Economic Research, Wiley Blackwell, vol. 41(2), pages 137-146, April.
    4. Butler, J. S. & Schachter, Barry, 1986. "Unbiased estimation of the Black/Scholes formula," Journal of Financial Economics, Elsevier, vol. 15(3), pages 341-357, March.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Popovic, Ray & Goldsman, David, 2012. "On valuing and hedging European options when volatility is estimated directly," European Journal of Operational Research, Elsevier, vol. 218(1), pages 124-131.
    3. Dan Stefanica & Radoš Radoičić, 2016. "A sharp approximation for ATM-forward option prices and implied volatilites," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-24, March.
    4. Butler, J. S. & Schachter, Barry, 1996. "The statistical properties of parameters inferred from the black-scholes formula," International Review of Financial Analysis, Elsevier, vol. 5(3), pages 223-235.
    5. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Analysis of the Black-Scholes Option Price," Cambridge Working Papers in Economics 0102, Faculty of Economics, University of Cambridge.
    6. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    7. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.
    8. Minqiang Li & Kyuseok Lee, 2011. "An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1245-1269.
    9. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
    10. Steven Li, 2003. "The estimation of implied volatility from the Black-Scholes model: some new formulas and their applications," School of Economics and Finance Discussion Papers and Working Papers Series 141, School of Economics and Finance, Queensland University of Technology.
    11. Michele Mininni & Giuseppe Orlando & Giovanni Taglialatela, 2021. "Challenges in approximating the Black and Scholes call formula with hyperbolic tangents," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 73-100, June.
    12. Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    13. Dan Stefanica & Radoš Radoičić, 2017. "An Explicit Implied Volatility Formula," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-32, November.
    14. Don M. Chance & Thomas A. Hanson & Weiping Li & Jayaram Muthuswamy, 2017. "A bias in the volatility smile," Review of Derivatives Research, Springer, vol. 20(1), pages 47-90, April.
    15. Jussi Nikkinen & Petri Sahlstrom, 2001. "Impact of Scheduled U.S. Macroeconomic News on Stock Market Uncertainty: A Multinational Perspecive," Multinational Finance Journal, Multinational Finance Journal, vol. 5(2), pages 129-148, June.
    16. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    17. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    18. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    19. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    20. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1203.0599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.