IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1202.6187.html
   My bibliography  Save this paper

Why are quadratic normal volatility models analytically tractable?

Author

Listed:
  • Peter Carr
  • Travis Fisher
  • Johannes Ruf

Abstract

We discuss the class of "Quadratic Normal Volatility" models, which have drawn much attention in the financial industry due to their analytic tractability and flexibility. We characterize these models as the ones that can be obtained from stopped Brownian motion by a simple transformation and a change of measure that only depends on the terminal value of the stopped Brownian motion. This explains the existence of explicit analytic formulas for option prices within Quadratic Normal Volatility models in the academic literature.

Suggested Citation

  • Peter Carr & Travis Fisher & Johannes Ruf, 2012. "Why are quadratic normal volatility models analytically tractable?," Papers 1202.6187, arXiv.org, revised Mar 2013.
  • Handle: RePEc:arx:papers:1202.6187
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1202.6187
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:53:y:1998:i:3:p:1165-1190 is not listed on IDEAS
    2. Rady, Sven, 1994. "The Direct Approach to Debt Option Pricing," Munich Reprints in Economics 3404, University of Munich, Department of Economics.
    3. Leif Andersen, 2011. "Option pricing with quadratic volatility: a revisit," Finance and Stochastics, Springer, vol. 15(2), pages 191-219, June.
    4. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.
    5. Beniamin Goldys, 1997. "A note on pricing interest rate derivatives when forward LIBOR rates are lognormal," Finance and Stochastics, Springer, vol. 1(4), pages 345-352.
    6. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    7. Sven Rady, 1997. "Option pricing in the presence of natural boundaries and a quadratic diffusion term (*)," Finance and Stochastics, Springer, vol. 1(4), pages 331-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Lipton & Andrey Gal & Andris Lasis, 2014. "Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1899-1922, November.
    2. Itkin, Andrey, 2015. "To sigmoid-based functional description of the volatility smile," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 264-291.
    3. Travis Fisher & Sergio Pulido & Johannes Ruf, 2017. "Financial Models with Defaultable Numéraires," Working Papers hal-01240736, HAL.
    4. Travis Fisher & Sergio Pulido & Johannes Ruf, 2015. "Financial Models with Defaultable Num\'eraires," Papers 1511.04314, arXiv.org, revised Oct 2017.
    5. Yukihiro Tsuzuki, 2024. "Boundary conditions at infinity for Black-Scholes equations," Papers 2401.05549, arXiv.org, revised Sep 2024.
    6. Travis Fisher & Sergio Pulido & Johannes Ruf, 2019. "Financial Models with Defaultable Numéraires," Post-Print hal-01240736, HAL.
    7. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.
    8. Sergio Albeverio & Francesco Cordoni & Luca Persio & Gregorio Pellegrini, 2019. "Asymptotic expansion for some local volatility models arising in finance," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 527-573, December.
    9. Travis Fisher & Sergio Pulido & Johannes Ruf, 2019. "Financial models with defaultable numéraires," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 117-136, January.
    10. Fisher, Travis & Pulido, Sergio & Ruf, Johannes, 2019. "Financial models with defaultable numéraires," LSE Research Online Documents on Economics 84973, London School of Economics and Political Science, LSE Library.
    11. Yukihiro Tsuzuki, 2023. "Pitman's Theorem, Black-Scholes Equation, and Derivative Pricing for Fundraisers," Papers 2303.13956, arXiv.org.
    12. Çetin, Umut & Larsen, Kasper, 2023. "Uniqueness in cauchy problems for diffusive real-valued strict local martingales," LSE Research Online Documents on Economics 118743, London School of Economics and Political Science, LSE Library.
    13. Mark Craddock & Martino Grasselli, 2016. "Lie Symmetry Methods for Local Volatility Models," Research Paper Series 377, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Antonie Kotzé & Rudolf Oosthuizen & Edson Pindza, 2015. "Implied and Local Volatility Surfaces for South African Index and Foreign Exchange Options," JRFM, MDPI, vol. 8(1), pages 1-40, January.
    15. Craddock, Mark & Grasselli, Martino, 2020. "Lie symmetry methods for local volatility models," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3802-3841.
    16. Umut Cetin & Kasper Larsen, 2020. "Uniqueness in Cauchy problems for diffusive real-valued strict local martingales," Papers 2007.15041, arXiv.org, revised May 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Zuhlsdorff, 2001. "The pricing of derivatives on assets with quadratic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(4), pages 235-262.
    2. Zühlsdorff, Christian, 2002. "The Pricing of Derivatives on Assets with Quadratic Volatility," Bonn Econ Discussion Papers 5/2002, University of Bonn, Bonn Graduate School of Economics (BGSE).
    3. Antoine Jacquier & Martin Keller-Ressel, 2015. "Implied volatility in strict local martingale models," Papers 1508.04351, arXiv.org.
    4. Sven Rady, 1997. "Option pricing in the presence of natural boundaries and a quadratic diffusion term (*)," Finance and Stochastics, Springer, vol. 1(4), pages 331-344.
    5. S. Galluccio & J.‐M. Ly & Z. Huang & O. Scaillet, 2007. "Theory And Calibration Of Swap Market Models," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 111-141, January.
    6. Martin Herdegen & Martin Schweizer, 2018. "Semi‐efficient valuations and put‐call parity," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 1061-1106, October.
    7. Erik Schlögl, 2001. "Arbitrage-Free Interpolation in Models of Market Observable Interest Rates," Research Paper Series 71, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Martin HERDEGEN & Martin SCHWEIZER, 2016. "Economically Consistent Valuations and Put-Call Parity," Swiss Finance Institute Research Paper Series 16-02, Swiss Finance Institute.
    9. Bachmair, K., 2023. "The Effects of the LIBOR Scandal on Volatility and Liquidity in LIBOR Futures Markets," Cambridge Working Papers in Economics 2303, Faculty of Economics, University of Cambridge.
    10. Beniamin Goldys, 1997. "A note on pricing interest rate derivatives when forward LIBOR rates are lognormal," Finance and Stochastics, Springer, vol. 1(4), pages 345-352.
    11. Alexander Lipton & Andrey Gal & Andris Lasis, 2013. "Pricing of vanilla and first generation exotic options in the local stochastic volatility framework: survey and new results," Papers 1312.5693, arXiv.org.
    12. Yukihiro Tsuzuki, 2024. "Boundary conditions at infinity for Black-Scholes equations," Papers 2401.05549, arXiv.org, revised Sep 2024.
    13. Xiu, Dacheng, 2014. "Hermite polynomial based expansion of European option prices," Journal of Econometrics, Elsevier, vol. 179(2), pages 158-177.
    14. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    15. Eckhard Platen, 2005. "An Alternative Interest Rate Term Structure Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(06), pages 717-735.
    16. Fisher, Travis & Pulido, Sergio & Ruf, Johannes, 2019. "Financial models with defaultable numéraires," LSE Research Online Documents on Economics 84973, London School of Economics and Political Science, LSE Library.
    17. Kokholm, Thomas, 2008. "Pricing of Traffic Light Options and other Correlation Derivatives," Finance Research Group Working Papers F-2008-01, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    18. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    19. Tim Dun & Geoff Barton & Erik Schlögl, 2001. "Simulated Swaption Delta–Hedging In The Lognormal Forward Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 677-709.
    20. Ting‐Pin Wu & Son‐Nan Chen, 2008. "Valuation of floating range notes in a LIBOR market model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(7), pages 697-710, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1202.6187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.