IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v42y2019i2d10.1007_s10203-019-00247-w.html
   My bibliography  Save this article

Asymptotic expansion for some local volatility models arising in finance

Author

Listed:
  • Sergio Albeverio

    (University of Bonn)

  • Francesco Cordoni

    (University of Verona)

  • Luca Persio

    (University of Verona)

  • Gregorio Pellegrini

    (Financial and Credit Risk, Gruppo Generali Italia Spa)

Abstract

In this paper, we study the small noise asymptotic expansions for certain classes of local volatility models arising in finance. We provide explicit expressions for the involved coefficients as well as accurate estimates on the remainders. Moreover, we perform a detailed numerical analysis, with accuracy comparisons, of the obtained results by means of the standard Monte Carlo technique as well as exploiting the Polynomial Chaos Expansion approach.

Suggested Citation

  • Sergio Albeverio & Francesco Cordoni & Luca Persio & Gregorio Pellegrini, 2019. "Asymptotic expansion for some local volatility models arising in finance," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 527-573, December.
  • Handle: RePEc:spr:decfin:v:42:y:2019:i:2:d:10.1007_s10203-019-00247-w
    DOI: 10.1007/s10203-019-00247-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-019-00247-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-019-00247-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akihiko Takahashi & Yukihiro Tsuzuki, 2014. "A New Improvement Scheme for Approximation Methods of Probability Density Functions," CIRJE F-Series CIRJE-F-917, CIRJE, Faculty of Economics, University of Tokyo.
    2. Akihiko Takahashi & Yukihiro Tsuzuki, 2014. "A New Improvement Scheme for Approximation Methods of Probability Density Functions," CARF F-Series CARF-F-350, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Masayuki Uchida & Nakahiro Yoshida, 2004. "Asymptotic Expansion for Small Diffusions Applied to Option Pricing," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 189-223, October.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. Peter Carr & Travis Fisher & Johannes Ruf, 2012. "Why are quadratic normal volatility models analytically tractable?," Papers 1202.6187, arXiv.org, revised Mar 2013.
    6. Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
    7. Crestaux, Thierry & Le Maıˆtre, Olivier & Martinez, Jean-Marc, 2009. "Polynomial chaos expansion for sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1161-1172.
    8. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    9. E. Benhamou & E. Gobet & M. Miri, 2009. "Smart expansion and fast calibration for jump diffusions," Finance and Stochastics, Springer, vol. 13(4), pages 563-589, September.
    10. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Yoshida, Nakahiro, 2003. "Conditional expansions and their applications," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 53-81, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    2. Xuekang Zhang & Shounian Deng & Weiyin Fei, 2023. "Nonparametric Estimation of Trend for Stochastic Processes Driven by G-Brownian Motion with Small Noise," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    2. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    3. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    4. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    5. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
    6. Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    8. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    10. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    11. Lee, Huai-I & Hsieh, Tsung-Yu & Kuo, Wen-Hsiu & Hsu, Hsinan, 2015. "Can a path-dependent strategy outperform a path-independent strategy?," The Quarterly Review of Economics and Finance, Elsevier, vol. 58(C), pages 119-127.
    12. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    13. Kristensen, Dennis, 2008. "Estimation of partial differential equations with applications in finance," Journal of Econometrics, Elsevier, vol. 144(2), pages 392-408, June.
    14. Moreno, Manuel, 1995. "On the term structure of Interbank interest rates: jump-diffusion processes and option pricing," DES - Working Papers. Statistics and Econometrics. WS 7074, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Moraux, Franck, 2004. "Modeling the business risk of financially weakened firms: A new approach for corporate bond pricing," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 47-61.
    16. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2005. "A Control Variate Method for Monte Carlo Simulations of Heath-Jarrow-Morton with Jumps," Research Paper Series 167, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    18. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    19. Hamed Ghanbari & Michael Oancea & Stylianos Perrakis, 2021. "Shedding light on a dark matter: Jump diffusion and option‐implied investor preferences," European Financial Management, European Financial Management Association, vol. 27(2), pages 244-286, March.
    20. David S. Bates, 1997. "Post-'87 Crash Fears in S&P 500 Futures Options," NBER Working Papers 5894, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Local volatility models; Small noise asymptotic expansions; Corrections to the Black–Scholes type models; Jump-diffusion models; Polynomial drift; Exponential drift; Polynomial Chaos Expansion method; Monte Carlo techniques;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:42:y:2019:i:2:d:10.1007_s10203-019-00247-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.