IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v1y1997i4p345-352.html
   My bibliography  Save this article

A note on pricing interest rate derivatives when forward LIBOR rates are lognormal

Author

Listed:
  • Beniamin Goldys

    (School of Mathematics, The University of New South Wales, Sydney 2052, Australia)

Abstract

We derive the closed form pricing formulae for contracts written on zero coupon bonds for the lognormal forward LIBOR rates. The method is purely probabilistic in contrast with the earlier results obtained by Miltersen et al. (1997).

Suggested Citation

  • Beniamin Goldys, 1997. "A note on pricing interest rate derivatives when forward LIBOR rates are lognormal," Finance and Stochastics, Springer, vol. 1(4), pages 345-352.
  • Handle: RePEc:spr:finsto:v:1:y:1997:i:4:p:345-352
    Note: received: November 1995; final version received: June 1997
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00780/papers/7001004/70010345.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted

    File URL: http://link.springer.de/link/service/journals/00780/papers/7001004/70010345.ps.gz
    Download Restriction: Access to the full text of the articles in this series is restricted
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    2. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    3. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    4. Rady, Sven, 1994. "The Direct Approach to Debt Option Pricing," Munich Reprints in Economics 3404, University of Munich, Department of Economics.
    5. Klaus Sandmann & Dieter Sondermann, 1997. "A Note on the Stability of Lognormal Interest Rate Models and the Pricing of Eurodollar Futures," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 119-125, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Carr & Travis Fisher & Johannes Ruf, 2012. "Why are quadratic normal volatility models analytically tractable?," Papers 1202.6187, arXiv.org, revised Mar 2013.
    2. Zühlsdorff, Christian, 2002. "The Pricing of Derivatives on Assets with Quadratic Volatility," Bonn Econ Discussion Papers 5/2002, University of Bonn, Bonn Graduate School of Economics (BGSE).
    3. S. Galluccio & J.‐M. Ly & Z. Huang & O. Scaillet, 2007. "Theory And Calibration Of Swap Market Models," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 111-141, January.
    4. Bachmair, K., 2023. "The Effects of the LIBOR Scandal on Volatility and Liquidity in LIBOR Futures Markets," Cambridge Working Papers in Economics 2303, Faculty of Economics, University of Cambridge.
    5. Christian Zuhlsdorff, 2001. "The pricing of derivatives on assets with quadratic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(4), pages 235-262.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    3. Takashi Yasuoka, 2001. "Mathematical Pseudo-Completion Of The Bgm Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 375-401.
    4. Barsotti, Flavia & Milhaud, Xavier & Salhi, Yahia, 2016. "Lapse risk in life insurance: Correlation and contagion effects among policyholders’ behaviors," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 317-331.
    5. Jaka Gogala & Joanne E. Kennedy, 2017. "CLASSIFICATION OF TWO- AND THREE-FACTOR TIME-HOMOGENEOUS SEPARABLE LMMs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-44, March.
    6. Raoul Pietersz & Marcel Regenmortel, 2006. "Generic market models," Finance and Stochastics, Springer, vol. 10(4), pages 507-528, December.
      • Pietersz, R. & van Regenmortel, M., 2005. "Generic Market Models," ERIM Report Series Research in Management ERS-2005-010-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
      • Raoul Pietersz & Marcel van Regenmortel, 2005. "Generic Market Models," Finance 0502009, University Library of Munich, Germany.
    7. Jui‐Jane Chang & Son‐Nan Chen & Ting‐Pin Wu, 2013. "Currency‐Protected Swaps and Swaptions with Nonzero Spreads in a Multicurrency LMM," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(9), pages 827-867, September.
    8. Marek Musiela, 2022. "My journey through finance and stochastics," Finance and Stochastics, Springer, vol. 26(1), pages 33-58, January.
    9. Dan Pirjol, 2013. "Explosive Behavior In A Log-Normal Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-23.
    10. Karol Gellert & Erik Schlogl, 2021. "Short Rate Dynamics: A Fed Funds and SOFR perspective," Papers 2101.04308, arXiv.org.
    11. Grubisic, I. & Pietersz, R., 2005. "Efficient Rank Reduction of Correlation Matrices," ERIM Report Series Research in Management ERS-2005-009-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Mark Joshi & Alan Stacey, 2008. "New and robust drift approximations for the LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 427-434.
    13. Heidari, Massoud & Wu, Liuren, 2009. "A Joint Framework for Consistently Pricing Interest Rates and Interest Rate Derivatives," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(3), pages 517-550, June.
    14. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    15. Lotz, Christopher & Schlogl, Lutz, 2000. "Default risk in a market model," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 301-327, January.
    16. K. F. Pilz & E. Schlögl, 2013. "A hybrid commodity and interest rate market model," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 543-560, March.
    17. David Criens & Kathrin Glau & Zorana Grbac, 2015. "Martingale property of exponential semimartingales: a note on explicit conditions and applications to financial models," Papers 1506.08127, arXiv.org, revised Aug 2016.
    18. Marek Rutkowski & Matthew Bickersteth, 2021. "Pricing and Hedging of SOFR Derivatives under Differential Funding Costs and Collateralization," Papers 2112.14033, arXiv.org.
    19. Sven Rady, 1997. "Option pricing in the presence of natural boundaries and a quadratic diffusion term (*)," Finance and Stochastics, Springer, vol. 1(4), pages 331-344.
    20. Glasserman, P. & Zhao, X., 1998. "Arbitrage-Free Discretization of Lognormal Forward Libor and Swap Rate Models," Papers 98-09, Columbia - Graduate School of Business.

    More about this item

    Keywords

    Lognormal model of LIBOR rates; contracts on zero-coupon bonds; Girsanov transformation;
    All these keywords.

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:1:y:1997:i:4:p:345-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.