IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1111.4808.html
   My bibliography  Save this paper

Conditional sampling for barrier option pricing under the LT method

Author

Listed:
  • Nico Achtsis
  • Ronald Cools
  • Dirk Nuyens

Abstract

We develop a conditional sampling scheme for pricing knock-out barrier options under the Linear Transformations (LT) algorithm from Imai and Tan (2006). We compare our new method to an existing conditional Monte Carlo scheme from Glasserman and Staum (2001), and show that a substantial variance reduction is achieved. We extend the method to allow pricing knock-in barrier options and introduce a root-finding method to obtain a further variance reduction. The effectiveness of the new method is supported by numerical results.

Suggested Citation

  • Nico Achtsis & Ronald Cools & Dirk Nuyens, 2011. "Conditional sampling for barrier option pricing under the LT method," Papers 1111.4808, arXiv.org, revised Dec 2012.
  • Handle: RePEc:arx:papers:1111.4808
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1111.4808
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Glasserman & Jeremy Staum, 2001. "Conditioning on One-Step Survival for Barrier Option Simulations," Operations Research, INFORMS, vol. 49(6), pages 923-937, December.
    2. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    3. Mark Joshi & Robert Tang, 2010. "Pricing And Deltas Of Discretely-Monitored Barrier Options Using Stratified Sampling On The Hitting-Times To The Barrier," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(05), pages 717-750.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Baldeaux & Dale Roberts, 2012. "Quasi-Monte Carol Methods for the Heston Model," Research Paper Series 307, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Xie, Fei & He, Zhijian & Wang, Xiaoqun, 2019. "An importance sampling-based smoothing approach for quasi-Monte Carlo simulation of discrete barrier options," European Journal of Operational Research, Elsevier, vol. 274(2), pages 759-772.
    4. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    5. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    6. Raimova, Gulnora, 2011. "Variance reduction methods at the pricing of weather options," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 21(1), pages 3-15.
    7. Pierre L'Ecuyer & Christian Lécot & Bruno Tuffin, 2008. "A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains," Operations Research, INFORMS, vol. 56(4), pages 958-975, August.
    8. Jan Baldeaux, 2011. "Exact Simulation of the 3/2 Model," Papers 1105.3297, arXiv.org, revised May 2011.
    9. Lemieux, Christiane & L’Ecuyer, Pierre, 2001. "On selection criteria for lattice rules and other quasi-Monte Carlo point sets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 55(1), pages 139-148.
    10. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2013. "Control variates and conditional Monte Carlo for basket and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 421-434.
    11. Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.
    12. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.
    13. Lee, Hangsuck & Ha, Hongjun & Lee, Minha, 2023. "Partial quanto lookback options," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    14. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    15. L’Ecuyer, P. & Sanvido, C., 2010. "Coupling from the past with randomized quasi-Monte Carlo," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 476-489.
    16. L’Ecuyer, Pierre & Granger-Piché, Jacinthe, 2003. "Combined generators with components from different families," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(3), pages 395-404.
    17. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2011. "Using the continuous price as control variate for discretely monitored options," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 691-704.
    18. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    19. Nico Achtsis & Ronald Cools & Dirk Nuyens, 2012. "Conditional sampling for barrier option pricing under the Heston model," Papers 1207.6566, arXiv.org, revised Dec 2012.
    20. L'Ecuyer, Pierre, 2004. "Random number generation," Papers 2004,21, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1111.4808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.