IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1110.4516.html
   My bibliography  Save this paper

Calculating Variable Annuity Liability 'Greeks' Using Monte Carlo Simulation

Author

Listed:
  • Mark J. Cathcart
  • Steven Morrison
  • Alexander J. McNeil

Abstract

Hedging methods to mitigate the exposure of variable annuity products to market risks require the calculation of market risk sensitivities (or "Greeks"). The complex, path-dependent nature of these products means these sensitivities typically must be estimated by Monte Carlo simulation. Standard market practice is to measure such sensitivities using a "bump and revalue" method. As well as requiring multiple valuations, such approaches can be unreliable for higher order Greeks, e.g., gamma. In this article we investigate alternative estimators implemented within an advanced economic scenario generator model, incorporating stochastic interest-rates and stochastic equity volatility. The estimators can also be easily generalized to work with the addition of equity jumps in this model.

Suggested Citation

  • Mark J. Cathcart & Steven Morrison & Alexander J. McNeil, 2011. "Calculating Variable Annuity Liability 'Greeks' Using Monte Carlo Simulation," Papers 1110.4516, arXiv.org.
  • Handle: RePEc:arx:papers:1110.4516
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1110.4516
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Rajan Suri & Michael A. Zazanis, 1988. "Perturbation Analysis Gives Strongly Consistent Sensitivity Estimates for the M/G/1 Queue," Management Science, INFORMS, vol. 34(1), pages 39-64, January.
    4. Martin I. Reiman & Alan Weiss, 1989. "Sensitivity Analysis for Simulations via Likelihood Ratios," Operations Research, INFORMS, vol. 37(5), pages 830-844, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael C. Fu, 2008. "What you should know about simulation and derivatives," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(8), pages 723-736, December.
    2. Yongqiang Wang & Michael C. Fu & Steven I. Marcus, 2012. "A New Stochastic Derivative Estimator for Discontinuous Payoff Functions with Application to Financial Derivatives," Operations Research, INFORMS, vol. 60(2), pages 447-460, April.
    3. Gilles Pag`es & Olivier Pironneau & Guillaume Sall, 2016. "Vibrato and automatic differentiation for high order derivatives and sensitivities of financial options," Papers 1606.06143, arXiv.org.
    4. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Zheng Cao & Xinhao Lin, 2024. "Theoretical and Empirical Validation of Heston Model," Papers 2409.12453, arXiv.org, revised Oct 2024.
    7. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    8. Gilles Pages & Olivier Pironneau & Guillaume Sall, 2015. "Vibrato and Automatic Differentiation for High Order Derivatives and Sensitivities of Financial Options," Working Papers hal-01234637, HAL.
    9. Xin Yun & L. Jeff Hong & Guangxin Jiang & Shouyang Wang, 2019. "On gamma estimation via matrix kriging," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(5), pages 393-410, August.
    10. Nan Chen & Yanchu Liu, 2014. "American Option Sensitivities Estimation via a Generalized Infinitesimal Perturbation Analysis Approach," Operations Research, INFORMS, vol. 62(3), pages 616-632, June.
    11. Pierre-Antoine Arsaguet & Paul Bilokon, 2023. "Derivatives Sensitivities Computation under Heston Model on GPU," Papers 2309.10477, arXiv.org.
    12. Patrik Karlsson, 2018. "Finite element based Monte Carlo simulation of options on Lévy driven assets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-23, March.
    13. Shafi, Khuram & Latif, Natasha & Shad, Shafqat Ali & Idrees, Zahra & Gulzar, Saqib, 2018. "Estimating option greeks under the stochastic volatility using simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1288-1296.
    14. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    15. Jan Baldeaux & Dale Roberts, 2012. "Quasi-Monte Carol Methods for the Heston Model," Research Paper Series 307, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.
    17. Detemple, Jerome & Rindisbacher, Marcel, 2007. "Monte Carlo methods for derivatives of options with discontinuous payoffs," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3393-3417, April.
    18. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    19. Zhenyu Cui & Michael C. Fu & Jian-Qiang Hu & Yanchu Liu & Yijie Peng & Lingjiong Zhu, 2020. "On the Variance of Single-Run Unbiased Stochastic Derivative Estimators," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 390-407, April.
    20. Boda Kang & Christina Nikitopoulos Sklibosios & Erik Schlogl & Blessing Taruvinga, 2019. "The Impact of Jumps on American Option Pricing: The S&P 100 Options Case," Research Paper Series 397, Quantitative Finance Research Centre, University of Technology, Sydney.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1110.4516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.