IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.06679.html
   My bibliography  Save this paper

Strict Local Martingales and Optimal Investment in a Black-Scholes Model with a Bubble

Author

Listed:
  • Martin Herdegen
  • Sebastian Herrmann

Abstract

There are two major streams of literature on the modeling of financial bubbles: the strict local martingale framework and the Johansen-Ledoit-Sornette (JLS) financial bubble model. Based on a class of models that embeds the JLS model and can exhibit strict local martingale behavior, we clarify the connection between these previously disconnected approaches. While the original JLS model is never a strict local martingale, there are relaxations which can be strict local martingales and which preserve the key assumption of a log-periodic power law for the hazard rate of the time of the crash. We then study the optimal investment problem for an investor with constant relative risk aversion in this model. We show that for positive instantaneous expected returns, investors with relative risk aversion above one always ride the bubble.

Suggested Citation

  • Martin Herdegen & Sebastian Herrmann, 2017. "Strict Local Martingales and Optimal Investment in a Black-Scholes Model with a Bubble," Papers 1711.06679, arXiv.org.
  • Handle: RePEc:arx:papers:1711.06679
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.06679
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Temin & Hans-Joachim Voth, 2004. "Riding the South Sea Bubble," American Economic Review, American Economic Association, vol. 94(5), pages 1654-1668, December.
    2. repec:bla:jfinan:v:43:y:1988:i:1:p:143-53 is not listed on IDEAS
    3. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    4. Anna Scherbina & Bernd Schlusche, 2014. "Asset price bubbles: a survey," Quantitative Finance, Taylor & Francis Journals, vol. 14(4), pages 589-604, April.
    5. Didier Sornette & Ryan Woodard, & Wanfeng Yan & Wei-Xing Zhou, "undated". "Clarifications to Questions and Criticisms on the Johansen-Ledoit-Sornette bubble Model," Working Papers ETH-RC-11-004, ETH Zurich, Chair of Systems Design.
    6. Frank Thomas Seifried, 2010. "Optimal Investment for Worst-Case Crash Scenarios: A Martingale Approach," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 559-579, August.
    7. Brée, David S. & Joseph, Nathan Lael, 2013. "Testing for financial crashes using the Log Periodic Power Law model," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 287-297.
    8. Steven L. Heston & Mark Loewenstein & Gregory A. Willard, 2007. "Options and Bubbles," The Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 359-390.
    9. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    10. Jan Kallsen, 2000. "Optimal portfolios for exponential Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 357-374, August.
    11. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    12. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    13. Anders Johansen & Didier Sornette, 1999. "Critical Crashes," Papers cond-mat/9901035, arXiv.org.
    14. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    15. Martin HERDEGEN & Sebastian HERRMANN, 2014. "A Class of Strict Local Martingales," Swiss Finance Institute Research Paper Series 14-18, Swiss Finance Institute, revised Oct 2014.
    16. MOSSIN, Jan, 1968. "Optimal multiperiod portfolio policies," LIDAM Reprints CORE 19, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Loewenstein, Mark & Willard, Gregory A., 2000. "Rational Equilibrium Asset-Pricing Bubbles in Continuous Trading Models," Journal of Economic Theory, Elsevier, vol. 91(1), pages 17-58, March.
    18. repec:bla:jfinan:v:59:y:2004:i:5:p:2013-2040 is not listed on IDEAS
    19. Ralf Korn & Paul Wilmott, 2002. "Optimal Portfolios Under The Threat Of A Crash," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 171-187.
    20. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    21. Stefan Gerhold & Paolo Guasoni & Johannes Muhle-Karbe & Walter Schachermayer, 2014. "Transaction costs, trading volume, and the liquidity premium," Finance and Stochastics, Springer, vol. 18(1), pages 1-37, January.
    22. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    23. J. A. Feigenbaum, 2001. "More on a statistical analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 527-532.
    24. Vandewalle, N. & Boveroux, Ph. & Minguet, A. & Ausloos, M., 1998. "The crash of October 1987 seen as a phase transition: amplitude and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 255(1), pages 201-210.
    25. Belak, Christoph & Christensen, Sören & Menkens, Olaf, 2014. "Worst-case optimal investment with a random number of crashes," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 140-148.
    26. David S. Bree & Nathan Lael Joseph, 2010. "Testing for financial crashes using the Log Periodic Power Law mode," Papers 1002.1010, arXiv.org, revised Apr 2013.
    27. Ying Jiao & Huyên Pham, 2011. "Optimal investment with counterparty risk: a default-density model approach," Finance and Stochastics, Springer, vol. 15(4), pages 725-753, December.
    28. Graf v. Bothmer, Hans-Christian & Meister, Christian, 2003. "Predicting critical crashes? A new restriction for the free variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 539-547.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristoffer Pons Bertelsen, 2019. "Comparing Tests for Identification of Bubbles," CREATES Research Papers 2019-16, Department of Economics and Business Economics, Aarhus University.
    2. John Fry & McMillan David, 2015. "Stochastic modelling for financial bubbles and policy," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1002152-100, December.
    3. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    4. Papastamatiou, Konstantinos & Karakasidis, Theodoros, 2022. "Bubble detection in Greek Stock Market: A DS-LPPLS model approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    5. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    6. Sascha Desmettre & Sebastian Merkel & Annalena Mickel & Alexander Steinicke, 2023. "Worst-Case Optimal Investment in Incomplete Markets," Papers 2311.10021, arXiv.org.
    7. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    8. Hanwool Jang & Yena Song & Sungbin Sohn & Kwangwon Ahn, 2018. "Real Estate Soars and Financial Crises: Recent Stories," Sustainability, MDPI, vol. 10(12), pages 1-12, December.
    9. Christopher Lynch & Benjamin Mestel, 2017. "Logistic Model For Stock Market Bubbles And Anti-Bubbles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-24, September.
    10. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    11. Fry, John, 2012. "Exogenous and endogenous crashes as phase transitions in complex financial systems," MPRA Paper 36202, University Library of Munich, Germany.
    12. Christoph Belak & Sören Christensen & Olaf Menkens, 2016. "Worst-Case Portfolio Optimization In A Market With Bubbles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-36, March.
    13. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    14. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    15. Michael Schatz & Didier Sornette, 2017. "Uniform Integrability of a Single Jump Local Martingale with State-Dependent Characteristics," Swiss Finance Institute Research Paper Series 17-21, Swiss Finance Institute.
    16. Riza Demirer & Guilherme Demos & Rangan Gupta & Didier Sornette, 2019. "On the predictability of stock market bubbles: evidence from LPPLS confidence multi-scale indicators," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 843-858, May.
    17. John Fry, 2014. "Bubbles, shocks and elementary technical trading strategies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(1), pages 1-13, January.
    18. Hideyuki Takagi, 2021. "Exploring the Endogenous Nature of Meme Stocks Using the Log-Periodic Power Law Model and Confidence Indicator," Papers 2110.06190, arXiv.org.
    19. Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.
    20. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.06679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.