IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1106.0020.html
   My bibliography  Save this paper

Comparison of Two Numerical Methods for Computation of American Type of the Floating Strike Asian Option

Author

Listed:
  • J. D. Kandilarov
  • D. Sevcovic

Abstract

We present a numerical approach for solving the free boundary problem for the Black-Scholes equation for pricing American style of floating strike Asian options. A fixed domain transformation of the free boundary problem into a parabolic equation defined on a fixed spatial domain is performed. As a result a nonlinear time-dependent term is involved in the resulting equation. Two new numerical algorithms are proposed. In the first algorithm a predictor-corrector scheme is used. The second one is based on the Newton method. Computational experiments, confirming the accuracy of the algorithms are presented and discussed.

Suggested Citation

  • J. D. Kandilarov & D. Sevcovic, 2011. "Comparison of Two Numerical Methods for Computation of American Type of the Floating Strike Asian Option," Papers 1106.0020, arXiv.org.
  • Handle: RePEc:arx:papers:1106.0020
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1106.0020
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomáš Bokes & Daniel Ševčovič, 2010. "Early Exercise Boundary for American Type of Floating Strike Asian Option and Its Numerical Approximation," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(5), pages 367-394, November.
    2. Tomas Bokes & Daniel Sevcovic, 2009. "Early exercise boundary for American type of floating strike Asian option and its numerical approximation," Papers 0912.1321, arXiv.org.
    3. Min Dai & Yue Kuen Kwok, 2006. "Characterization Of Optimal Stopping Regions Of American Asian And Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 63-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomas Bokes, 2010. "A unified approach to determining the early exercise boundary position at expiry for American style of general class of derivatives," Papers 1012.0348, arXiv.org, revised Mar 2011.
    2. Daniel Sevcovic & Martin Takac, 2011. "Sensitivity analysis of the early exercise boundary for American style of Asian options," Papers 1101.3071, arXiv.org.
    3. Neofytos Rodosthenous & Mihail Zervos, 2017. "Watermark options," Finance and Stochastics, Springer, vol. 21(1), pages 157-186, January.
    4. Rodosthenous, Neofytos & Zervos, Mihail, 2017. "Watermark options," LSE Research Online Documents on Economics 67859, London School of Economics and Political Science, LSE Library.
    5. Deng, Guohe, 2020. "Pricing perpetual American floating strike lookback option under multiscale stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Mariotti, Thomas & Décamps, Jean-Paul & Gensbittel, Fabien, 2021. "Investment Timing and Technological Breakthrough," CEPR Discussion Papers 16246, C.E.P.R. Discussion Papers.
    7. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    8. Andrea Pascucci, 2008. "Free boundary and optimal stopping problems for American Asian options," Finance and Stochastics, Springer, vol. 12(1), pages 21-41, January.
    9. Tomas Bokes & Daniel Sevcovic, 2009. "Early exercise boundary for American type of floating strike Asian option and its numerical approximation," Papers 0912.1321, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1106.0020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.