IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1012.0348.html
   My bibliography  Save this paper

A unified approach to determining the early exercise boundary position at expiry for American style of general class of derivatives

Author

Listed:
  • Tomas Bokes

Abstract

In this paper, we present a new method for calculating the limit of early exercise boundary at expiry. We price American style of general derivative using a formula expressed as a sum of the value of European style of derivative and so called American premium. We use the latter expression to calculate an analytic formula for limit of early exercise boundary at expiry. Method applied on American style plain vanilla, Asian and lookback options yields identical results with already known values. Results for selected American style of derivative strategies are compared with limits calculated by the PSOR method.

Suggested Citation

  • Tomas Bokes, 2010. "A unified approach to determining the early exercise boundary position at expiry for American style of general class of derivatives," Papers 1012.0348, arXiv.org, revised Mar 2011.
  • Handle: RePEc:arx:papers:1012.0348
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1012.0348
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song-Ping Zhu & Zhi-Wei He, 2007. "Calculating The Early Exercise Boundary Of American Put Options With An Approximation Formula," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(07), pages 1203-1227.
    2. Chiarella, Carl & Ziogas, Andrew, 2005. "Evaluation of American strangles," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 31-62, January.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Song-Ping Zhu, 2006. "A New Analytical Approximation Formula For The Optimal Exercise Boundary Of American Put Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(07), pages 1141-1177.
    5. Daniel Sevcovic, 2008. "Transformation methods for evaluating approximations to the optimal exercise boundary for linear and nonlinear Black-Scholes equations," Papers 0805.0611, arXiv.org.
    6. Asbjørn T. Hansen & Peter Løchte Jørgensen, 2000. "Analytical Valuation of American-Style Asian Options," Management Science, INFORMS, vol. 46(8), pages 1116-1136, August.
    7. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, October.
    8. Tomas Bokes & Daniel Sevcovic, 2009. "Early exercise boundary for American type of floating strike Asian option and its numerical approximation," Papers 0912.1321, arXiv.org.
    9. Min Dai & Yue Kuen Kwok, 2006. "Characterization Of Optimal Stopping Regions Of American Asian And Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 63-82, January.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Lixin Wu & Yue Kuen Kwok & Hong Yu, 1999. "Asian Options With The American Early Exercise Feature," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 101-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Sevcovic & Martin Takac, 2011. "Sensitivity analysis of the early exercise boundary for American style of Asian options," Papers 1101.3071, arXiv.org.
    2. Zafar Ahmad & Reilly Browne & Rezaul Chowdhury & Rathish Das & Yushen Huang & Yimin Zhu, 2023. "Fast American Option Pricing using Nonlinear Stencils," Papers 2303.02317, arXiv.org, revised Oct 2023.
    3. Tomas Bokes & Daniel Sevcovic, 2009. "Early exercise boundary for American type of floating strike Asian option and its numerical approximation," Papers 0912.1321, arXiv.org.
    4. Andrew Ziogas & Carl Chiarella, 2003. "McKean’s Method applied to American Call Options on Jump-Diffusion Processes," Computing in Economics and Finance 2003 39, Society for Computational Economics.
    5. Otto Konstandatos & Timothy J Kyng, 2012. "Real Options Analysis for Commodity Based Mining Enterprises with Compound and Barrier Features," Published Paper Series 2012-3, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    6. Andrew Ziogas & Carl Chiarella, 2004. "Pricing American Options on Jump-Diffusion Processes using Fourier-Hermite Series Expansions," Computing in Economics and Finance 2004 177, Society for Computational Economics.
    7. Hitoshi Imai & Naoyuki Ishimura & Ikumi Mottate & Masaaki Nakamura, 2006. "On the Hoggard–Whalley–Wilmott Equation for the Pricing of Options with Transaction Costs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 315-326, December.
    8. Khaliq, A.Q.M. & Voss, D.A. & Kazmi, S.H.K., 2006. "A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 489-502, February.
    9. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    10. Ben Boukai, 2020. "How Much Is Your Strangle Worth? On the Relative Value of the Strangle under the Black-Scholes Pricing Model," Applied Economics and Finance, Redfame publishing, vol. 7(4), pages 138-146, July.
    11. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    12. Ziwei Ke & Joanna Goard, 2019. "Penalty American Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-32, March.
    13. B. Gao J. Huang, "undated". "The Valuation of American Barrier Options Using the Decomposition Technique," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-002, New York University, Leonard N. Stern School of Business-.
    14. Andrea Pascucci, 2008. "Free boundary and optimal stopping problems for American Asian options," Finance and Stochastics, Springer, vol. 12(1), pages 21-41, January.
    15. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    16. Deswal, Komal & Kumar, Devendra, 2022. "Rannacher time-marching with orthogonal spline collocation method for retrieving the discontinuous behavior of hedging parameters," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    17. Ömür Ugur, 2008. "An Introduction to Computational Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p556, February.
    18. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    19. Maria do Rosário Grossinho & Yaser Kord Faghan & Daniel Ševčovič, 2017. "Pricing Perpetual Put Options by the Black–Scholes Equation with a Nonlinear Volatility Function," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(4), pages 291-308, December.
    20. Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1012.0348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.