IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/125690.html
   My bibliography  Save this paper

Investment Timing and Technological Breakthroughs

Author

Listed:
  • Décamps, Jean-Paul
  • Gensbittel, Fabien
  • Mariotti, Thomas

Abstract

We study the optimal investment policy of a firm facing both technological and cash-flow uncertainty. At any point in time, the firm can decide to invest in a standalone technology or to wait for a technological breakthrough. Breakthroughs occur when market conditions become favorable enough, exceeding a certain threshold value that is ex-ante unknown to the firm. A microfoundation for this assumption is that a breakthrough occurs when the share of the surplus from the new technology accruing to its developer is high enough to cover her privately observed cost. We show that the relevant Markov state variables for the firm’s optimal investment policy are the current market conditions and their current historic maximum, and that the firm optimally invests in the stand-alone technology only when market conditions deteriorate enough after reaching a maximum. Empirically, investments in new technologies requiring the active cooperation of developers should thus take place in booms, whereas investments in state-of-the-art technologies should take place in busts. Moreover, the required return for investing in the stand-alone technology is always higher than if this were the only available technology and can take arbitrarily large values following certain histories. Finally, a decrease in development costs, or an increase in the value of the new technology, makes the firm more prone to bear downside risk and to delay investment in the stand-alone technology.

Suggested Citation

  • Décamps, Jean-Paul & Gensbittel, Fabien & Mariotti, Thomas, 2021. "Investment Timing and Technological Breakthroughs," TSE Working Papers 21-1222, Toulouse School of Economics (TSE), revised Dec 2024.
  • Handle: RePEc:tse:wpaper:125690
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2021/wp_tse_1222.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Huisman, Kuno J. M. & Kort, Peter M., 2004. "Strategic technology adoption taking into account future technological improvements: A real options approach," European Journal of Operational Research, Elsevier, vol. 159(3), pages 705-728, December.
    2. Jean-Paul Décamps & Thomas Mariotti & Stéphane Villeneuve, 2006. "Irreversible investment in alternative projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 425-448, June.
    3. Dutta, Prajit K & Rustichini, Aldo, 1993. "A Theory of Stopping Time Games with Applications to Product Innovations and Asset Sales," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(4), pages 743-763, October.
    4. Catherine Bobtcheff & Jérôme Bolte & Thomas Mariotti, 2017. "Researcher’s Dilemma," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(3), pages 969-1014.
    5. Farzin, Y. H. & Huisman, K. J. M. & Kort, P. M., 1998. "Optimal timing of technology adoption," Journal of Economic Dynamics and Control, Elsevier, vol. 22(5), pages 779-799, May.
    6. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    7. Kevin F. McCardle, 1985. "Information Acquisition and the Adoption of New Technology," Management Science, INFORMS, vol. 31(11), pages 1372-1389, November.
    8. Riedel, Frank & Steg, Jan-Henrik, 2017. "Subgame-perfect equilibria in stochastic timing games," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 36-50.
    9. Katz, Michael L & Shapiro, Carl, 1987. "R&D Rivalry with Licensing or Imitation," American Economic Review, American Economic Association, vol. 77(3), pages 402-420, June.
    10. Drew Fudenberg & Jean Tirole, 1985. "Preemption and Rent Equalization in the Adoption of New Technology," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 52(3), pages 383-401.
    11. Robert McDonald & Daniel Siegel, 1986. "The Value of Waiting to Invest," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(4), pages 707-727.
    12. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    13. Balcer, Yves & Lippman, Steven A., 1984. "Technological expectations and adoption of improved technology," Journal of Economic Theory, Elsevier, vol. 34(2), pages 292-318, December.
    14. Michail Chronopoulos & Afzal Siddiqui, 2015. "When is it better to wait for a new version? Optimal replacement of an emerging technology under uncertainty," Annals of Operations Research, Springer, vol. 235(1), pages 177-201, December.
    15. Murto, Pauli, 2007. "Timing of investment under technological and revenue-related uncertainties," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1473-1497, May.
    16. Grenadier, Steven R. & Weiss, Allen M., 1997. "Investment in technological innovations: An option pricing approach," Journal of Financial Economics, Elsevier, vol. 44(3), pages 397-416, June.
    17. Alvarez, Luis H. R. & Stenbacka, Rune, 2001. "Adoption of uncertain multi-stage technology projects: a real options approach," Journal of Mathematical Economics, Elsevier, vol. 35(1), pages 71-97, February.
    18. Jensen, Richard, 1982. "Adoption and diffusion of an innovation of uncertain profitability," Journal of Economic Theory, Elsevier, vol. 27(1), pages 182-193, June.
    19. Weiss, Allen M, 1994. "The Effects of Expectations on Technology Adoption: Some Empirical Evidence," Journal of Industrial Economics, Wiley Blackwell, vol. 42(4), pages 341-360, December.
    20. Dixit, Avinash, 1993. "Choosing among alternative discrete investment projects under uncertainty," Economics Letters, Elsevier, vol. 41(3), pages 265-268.
    21. Dixit, Avinash K, 1989. "Entry and Exit Decisions under Uncertainty," Journal of Political Economy, University of Chicago Press, vol. 97(3), pages 620-638, June.
    22. Rosenberg, Nathan, 1972. "Factors affecting the diffusion of technology," Explorations in Economic History, Elsevier, vol. 10(1), pages 3-33.
    23. Chronopoulos, Michail & Lumbreras, Sara, 2017. "Optimal regime switching under risk aversion and uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 543-555.
    24. Doraszelski, Ulrich, 2004. "Innovations, improvements, and the optimal adoption of new technologies," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1461-1480, April.
    25. Min Dai & Yue Kuen Kwok, 2006. "Characterization Of Optimal Stopping Regions Of American Asian And Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 63-82, January.
    26. Bhattacharya, Sudipto & Chatterjee, Kalyan & Samuelson, Larry, 1986. "Sequential Research and the Adoption of Innovations," Oxford Economic Papers, Oxford University Press, vol. 38(0), pages 219-243, Suppl. No.
    27. Chronopoulos, Michail & Siddiqui, Afzal, 2014. "When is it Better to Wait for a New Version? Optimal Replacement of an Emerging Technology under Uncertainty," Discussion Papers 2014/26, Norwegian School of Economics, Department of Business and Management Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doruk Cetemen & Can Urgun & Leeat Yariv, 2023. "Collective Progress: Dynamics of Exit Waves," Journal of Political Economy, University of Chicago Press, vol. 131(9), pages 2402-2450.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chronopoulos, Michail & Lumbreras, Sara, 2017. "Optimal regime switching under risk aversion and uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 543-555.
    2. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2017. "Strategic Technology Switching under Risk Aversion and Uncertainty," Discussion Papers 2017/10, Norwegian School of Economics, Department of Business and Management Science.
    3. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2021. "Strategic technology switching under risk aversion and uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    4. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2020. "Sequential investment in renewable energy technologies under policy uncertainty," Energy Policy, Elsevier, vol. 137(C).
    5. Murto, Pauli, 2007. "Timing of investment under technological and revenue-related uncertainties," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1473-1497, May.
    6. H. Dharma Kwon, 2010. "Invest or Exit? Optimal Decisions in the Face of a Declining Profit Stream," Operations Research, INFORMS, vol. 58(3), pages 638-649, June.
    7. Chronopoulos, Michail & Siddiqui, Afzal, 2014. "When is it Better to Wait for a New Version? Optimal Replacement of an Emerging Technology under Uncertainty," Discussion Papers 2014/26, Norwegian School of Economics, Department of Business and Management Science.
    8. Michail Chronopoulos & Afzal Siddiqui, 2015. "When is it better to wait for a new version? Optimal replacement of an emerging technology under uncertainty," Annals of Operations Research, Springer, vol. 235(1), pages 177-201, December.
    9. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    10. Kort, Peter M. & Murto, Pauli & Pawlina, Grzegorz, 2010. "Uncertainty and stepwise investment," European Journal of Operational Research, Elsevier, vol. 202(1), pages 196-203, April.
    11. Farzin, Y. H. & Huisman, K. J. M. & Kort, P. M., 1998. "Optimal timing of technology adoption," Journal of Economic Dynamics and Control, Elsevier, vol. 22(5), pages 779-799, May.
    12. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2016. "Sequential Investment in Emerging Technologies under Policy Uncertainty," Discussion Papers 2016/10, Norwegian School of Economics, Department of Business and Management Science.
    13. Doraszelski, Ulrich, 2004. "Innovations, improvements, and the optimal adoption of new technologies," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1461-1480, April.
    14. Hagspiel, Verena & Huisman, Kuno J.M. & Nunes, Clàudia, 2015. "Optimal technology adoption when the arrival rate of new technologies changes," European Journal of Operational Research, Elsevier, vol. 243(3), pages 897-911.
    15. Hagspiel, V. & Huisman, Kuno & Kort, Peter M. & Nunes, Claudia & Pimentel, Rita, 2018. "Product Innovation of an Incumbent Firm : A Dynamic Analysis," Discussion Paper 2018-048, Tilburg University, Center for Economic Research.
    16. Jean-Paul Décamps & Thomas Mariotti & Stéphane Villeneuve, 2006. "Irreversible investment in alternative projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 425-448, June.
    17. Ye, Fanglin & Paulson, Nicholas & Khanna, Madhu, 2024. "Strategic innovation and technology adoption under technological uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 165(C).
    18. Tetsuya Kasahara, 2015. "Strategic Technology Adoption Under Dispersed Information and Information Learning," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 12(06), pages 1-18, December.
    19. Femminis, Gianluca & Martini, Gianmaria, 2011. "Irreversible investment and R&D spillovers in a dynamic duopoly," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 1061-1090, July.
    20. Hagspiel, Verena & Huisman, Kuno J.M. & Kort, Peter M. & Lavrutich, Maria N. & Nunes, Cláudia & Pimentel, Rita, 2020. "Technology adoption in a declining market," European Journal of Operational Research, Elsevier, vol. 285(1), pages 380-392.

    More about this item

    Keywords

    Investment Timing; Technological Uncertainty; Optimal Stopping.;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D25 - Microeconomics - - Production and Organizations - - - Intertemporal Firm Choice: Investment, Capacity, and Financing
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:125690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.