IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1105.3918.html
   My bibliography  Save this paper

A note on a paper by Wong and Heyde

Author

Listed:
  • Aleksandar Mijatovi'c
  • Mikhail Urusov

Abstract

In this note we re-examine the analysis of the paper "On the martingale property of stochastic exponentials" by B. Wong and C.C. Heyde, Journal of Applied Probability, 41(3):654-664, 2004. Some counterexamples are presented and alternative formulations are discussed.

Suggested Citation

  • Aleksandar Mijatovi'c & Mikhail Urusov, 2011. "A note on a paper by Wong and Heyde," Papers 1105.3918, arXiv.org.
  • Handle: RePEc:arx:papers:1105.3918
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1105.3918
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aleksandar Mijatovic & Mikhail Urusov, 2009. "On the Martingale Property of Certain Local Martingales," Papers 0905.3701, arXiv.org, revised Oct 2010.
    2. Aleksandar Mijatovi'c & Mikhail Urusov, 2010. "Deterministic criteria for the absence of arbitrage in one-dimensional diffusion models," Papers 1005.1861, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299, arXiv.org, revised Dec 2011.
    2. Ruf, Johannes, 2013. "A new proof for the conditions of Novikov and Kazamaki," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 404-421.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksandar Mijatović & Mikhail Urusov, 2012. "Deterministic criteria for the absence of arbitrage in one-dimensional diffusion models," Finance and Stochastics, Springer, vol. 16(2), pages 225-247, April.
    2. Rheinländer, Thorsten & Schmutz, Michael, 2013. "Self-dual continuous processes," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1765-1779.
    3. S. M. Ould Aly, 2013. "Monotonicity Of Prices In Heston Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 1-23.
    4. Baldeaux, Jan & Ignatieva, Katja & Platen, Eckhard, 2018. "Detecting money market bubbles," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 369-379.
    5. Alexander Vervuurt, 2015. "Topics in Stochastic Portfolio Theory," Papers 1504.02988, arXiv.org.
    6. Thorsten Rheinlander & Michael Schmutz, 2012. "Self-dual continuous processes," Papers 1201.6516, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1105.3918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.