IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1010.3820.html
   My bibliography  Save this paper

Morse Potential, Contour Integrals, and Asian Options

Author

Listed:
  • Peng Zhang

Abstract

Completeness of the eigenfunctions of a quantum mechanical system is crucial for its probability interpretation. By using the method of contour integral we give properly normalized eigenfunctions for both discrete and continuum spectrum of the Morse potential, and explicitly prove the completeness relation. As an application we use our spectral decomposition formula to study the problem of the pricing of an Asian option traded in financial markets.

Suggested Citation

  • Peng Zhang, 2010. "Morse Potential, Contour Integrals, and Asian Options," Papers 1010.3820, arXiv.org, revised Nov 2010.
  • Handle: RePEc:arx:papers:1010.3820
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1010.3820
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375, October.
    2. Vadim Linetsky, 2004. "Spectral Expansions for Asian (Average Price) Options," Operations Research, INFORMS, vol. 52(6), pages 856-867, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Pirjol, 2024. "Subleading correction to the Asian options volatility in the Black-Scholes model," Papers 2407.05142, arXiv.org, revised Aug 2024.
    2. Aleksey S. Polunchenko & Andrey Pepelyshev, 2018. "Analytic moment and Laplace transform formulae for the quasi-stationary distribution of the Shiryaev diffusion on an interval," Statistical Papers, Springer, vol. 59(4), pages 1351-1377, December.
    3. Runhuan Feng & Hans W. Volkmer, 2015. "Conditional Asian Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1-24.
    4. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    5. Dan Pirjol & Jing Wang & Lingjiong Zhu, 2017. "Short Maturity Forward Start Asian Options in Local Volatility Models," Papers 1710.03160, arXiv.org.
    6. Runhuan Feng & Hans W. Volkmer, 2013. "An identity of hitting times and its application to the valuation of guaranteed minimum withdrawal benefit," Papers 1307.7070, arXiv.org.
    7. Geon Ho Choe & Minseok Kim, 2021. "Closed‐form lower bounds for the price of arithmetic average Asian options by multiple conditioning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1916-1932, December.
    8. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    9. Runhuan Feng & Hans W. Volkmer, 2015. "Conditional Asian Options," Papers 1505.06946, arXiv.org.
    10. Humayra Shoshi & Indranil SenGupta, 2023. "Some asymptotics for short maturity Asian options," Papers 2302.05421, arXiv.org, revised Sep 2024.
    11. Chueh-Yung Tsao & Chao-Ching Liu, 2012. "Asian Options with Credit Risks: Pricing and Sensitivity Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(S3), pages 96-115, September.
    12. Dan Pirjol & Lingjiong Zhu, 2023. "Sensitivities of Asian options in the Black-Scholes model," Papers 2301.06460, arXiv.org.
    13. Lingjiong Zhu, 2015. "Short maturity options for Azéma–Yor martingales," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-32, December.
    14. Dan Pirjol & Lingjiong Zhu, 2018. "Sensitivities Of Asian Options In The Black–Scholes Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-25, February.
    15. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    16. Yuji Hishida & Kenji Yasutomi, 2009. "Asymptotic behavior of prices of path dependent options," Papers 0911.5579, arXiv.org.
    17. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    18. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    19. Andrew Lyasoff, 2016. "Another look at the integral of exponential Brownian motion and the pricing of Asian options," Finance and Stochastics, Springer, vol. 20(4), pages 1061-1096, October.
    20. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1010.3820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.