IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1009.0635.html
   My bibliography  Save this paper

Numerical methods for optimal insurance demand under marked point processes shocks

Author

Listed:
  • Mohamed Mnif

Abstract

This paper deals with numerical solutions of maximizing expected utility from terminal wealth under a non-bankruptcy constraint. The wealth process is subject to shocks produced by a general marked point process. The problem of the agent is to derive the optimal insurance strategy which allows "lowering" the level of the shocks. This optimization problem is related to a suitable dual stochastic control problem in which the delicate boundary constraints disappear. In Mnif \cite{mnif10}, the dual value function is characterized as the unique viscosity solution of the corresponding Hamilton Jacobi Bellman Variational Inequality (HJBVI in short). We characterize the optimal insurance strategy by the solution of the variational inequality which we solve numerically by using an algorithm based on policy iterations.

Suggested Citation

  • Mohamed Mnif, 2010. "Numerical methods for optimal insurance demand under marked point processes shocks," Papers 1009.0635, arXiv.org.
  • Handle: RePEc:arx:papers:1009.0635
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1009.0635
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hojgaard, Bjarne & Taksar, Michael, 1998. "Optimal proportional reinsurance policies for diffusion models with transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 41-51, May.
    2. Mohamed Mnif, 2010. "Optimal insurance demand under marked point processes shocks: a dynamic programming duality approach," Papers 1008.5058, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Nan & Jin, Zhuo & Li, Shuanming & Chen, Ping, 2016. "Optimal reinsurance under dynamic VaR constraint," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 232-243.
    2. Chen, An & Li, Hong & Schultze, Mark B., 2023. "Optimal longevity risk transfer under asymmetric information," Economic Modelling, Elsevier, vol. 120(C).
    3. Luo, Shangzhen & Taksar, Michael & Tsoi, Allanus, 2008. "On reinsurance and investment for large insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 434-444, February.
    4. Shen, Yang & Zou, Bin, 2021. "Mean–variance investment and risk control strategies — A time-consistent approach via a forward auxiliary process," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 68-80.
    5. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    6. Yan, Jia & Liu, John J. & Li, Kevin X., 2008. "Threshold control of mutual insurance with limited commitment," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 108-115, August.
    7. Mohamed Mnif, 2010. "Optimal insurance demand under marked point processes shocks: a dynamic programming duality approach," Papers 1008.5058, arXiv.org.
    8. Hipp, Christian & Taksar, Michael, 2000. "Stochastic control for optimal new business," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 185-192, May.
    9. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    10. Zou, Bin & Cadenillas, Abel, 2014. "Optimal investment and risk control policies for an insurer: Expected utility maximization," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 57-67.
    11. He, Lin & Liang, Zongxia, 2009. "Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 88-94, February.
    12. Gauchon, Romain & Loisel, Stéphane & Rullière, Jean-Louis & Trufin, Julien, 2020. "Optimal prevention strategies in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 202-208.
    13. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2020. "A Perturbation Approach to Optimal Investment, Liability Ratio, and Dividend Strategies," Papers 2012.06703, arXiv.org, revised May 2021.
    14. Bo, Lijun & Wang, Shihua & Zhou, Chao, 2024. "A mean field game approach to optimal investment and risk control for competitive insurers," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 202-217.
    15. Xu, Lin & Zhang, Liming & Yao, Dingjun, 2017. "Optimal investment and reinsurance for an insurer under Markov-modulated financial market," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 7-19.
    16. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    17. Taksar, Michael & Hunderup, Christine Loft, 2007. "The influence of bankruptcy value on optimal risk control for diffusion models with proportional reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 311-321, March.
    18. Shu Zhang & Peimin Chen & Chunchi Wu, 2024. "Optimal dividend decisions with capital infusion in a dynamic nonterminal bankruptcy model," Review of Quantitative Finance and Accounting, Springer, vol. 62(3), pages 911-951, April.
    19. Yan, Tingjin & Wong, Hoi Ying, 2020. "Open-loop equilibrium reinsurance-investment strategy under mean–variance criterion with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 105-119.
    20. Ekaterina Bulinskaya & Julia Gusak & Anastasia Muromskaya, 2015. "Discrete-time Insurance Model with Capital Injections and Reinsurance," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 899-914, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1009.0635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.