IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v42y2008i1p434-444.html
   My bibliography  Save this article

On reinsurance and investment for large insurance portfolios

Author

Listed:
  • Luo, Shangzhen
  • Taksar, Michael
  • Tsoi, Allanus

Abstract

We consider a problem of optimal reinsurance and investment for an insurance company whose surplus is governed by a linear diffusion. The company's risk (and simultaneously its potential profit) is reduced through reinsurance, while in addition the company invests its surplus in a financial market. Our main goal is to find an optimal reinsurance-investment policy which minimizes the probability of ruin. More specifically, in this paper we consider the case of proportional reinsurance, and investment in a Black-Scholes market with one risk-free asset (bond, or bank account) and one risky asset (stock). We apply stochastic control theory to solve this problem. It transpires that the qualitative nature of the solution depends significantly on the interplay between the exogenous parameters and the constraints that we impose on the investment, such as the presence or absence of shortselling and/or borrowing. In each case we solve the corresponding Hamilton-Jacobi-Bellman equation and find a closed-form expression for the minimal ruin probability as well as the optimal reinsurance-investment policy.

Suggested Citation

  • Luo, Shangzhen & Taksar, Michael & Tsoi, Allanus, 2008. "On reinsurance and investment for large insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 434-444, February.
  • Handle: RePEc:eee:insuma:v:42:y:2008:i:1:p:434-444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00055-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hojgaard, Bjarne & Taksar, Michael, 1998. "Optimal proportional reinsurance policies for diffusion models with transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 41-51, May.
    2. Garrido, Jose, 1989. "Stochastic differential equations for compounded risk reserves," Insurance: Mathematics and Economics, Elsevier, vol. 8(3), pages 165-173, November.
    3. Sid Browne, 1997. "Survival and Growth with a Liability: Optimal Portfolio Strategies in Continuous Time," Mathematics of Operations Research, INFORMS, vol. 22(2), pages 468-493, May.
    4. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xin-Li & Zhang, Ke-Cun & Yu, Xing-Jiang, 2009. "Optimal proportional reinsurance and investment with transaction costs, I: Maximizing the terminal wealth," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 473-478, June.
    2. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    3. Bayraktar, Erhan & Young, Virginia R., 2007. "Minimizing the probability of lifetime ruin under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 196-221, July.
    4. Xu, Lin & Zhang, Liming & Yao, Dingjun, 2017. "Optimal investment and reinsurance for an insurer under Markov-modulated financial market," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 7-19.
    5. Bjarne Højgaard & Michael Taksar, 2004. "Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 315-327.
    6. Xiang Lin, 2009. "Ruin theory for classical risk process that is perturbed by diffusion with risky investments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(1), pages 33-44, January.
    7. Qianqian Zhou & Junyi Guo, 2020. "Optimal Control of Investment for an Insurer in Two Currency Markets," Papers 2006.02857, arXiv.org.
    8. Zhang, Nan & Jin, Zhuo & Li, Shuanming & Chen, Ping, 2016. "Optimal reinsurance under dynamic VaR constraint," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 232-243.
    9. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    10. Haluk Yener & Fuat Can Beylunioglu, 2017. "Outperforming A Stochastic Benchmark Under Borrowing And Rectangular Constraints," Working Papers 1701, The Center for Financial Studies (CEFIS), Istanbul Bilgi University.
    11. Ali Al-Aradi & Sebastian Jaimungal, 2018. "Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management," Papers 1803.05819, arXiv.org, revised Jul 2018.
    12. Young, Virginia R., 2017. "Purchasing casualty insurance to avoid lifetime ruin," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 133-142.
    13. Pablo Azcue & Nora Muler, 2013. "Minimizing the ruin probability allowing investments in two assets: a two-dimensional problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 177-206, April.
    14. Zhou, Qing, 2009. "Optimal investment for an insurer in the Lévy market: The martingale approach," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1602-1607, July.
    15. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    16. Begoña Fernández & Daniel Hernández-Hernández & Ana Meda & Patricia Saavedra, 2008. "An optimal investment strategy with maximal risk aversion and its ruin probability," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 159-179, August.
    17. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    18. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    19. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    20. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:1:p:434-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.