IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1002.2486.html
   My bibliography  Save this paper

Optimal consumption and investment with bounded downside risk measures for logarithmic utility functions

Author

Listed:
  • Claudia Kluppelberg

    (LMRS)

  • Serguei Pergamenchtchikov

    (LMRS)

Abstract

We investigate optimal consumption problems for a Black-Scholes market under uniform restrictions on Value-at-Risk and Expected Shortfall for logarithmic utility functions. We find the solutions in terms of a dynamic strategy in explicit form, which can be compared and interpreted. This paper continues our previous work, where we solved similar problems for power utility functions.

Suggested Citation

  • Claudia Kluppelberg & Serguei Pergamenchtchikov, 2010. "Optimal consumption and investment with bounded downside risk measures for logarithmic utility functions," Papers 1002.2486, arXiv.org.
  • Handle: RePEc:arx:papers:1002.2486
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1002.2486
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Susanne Emmer & Claudia Klüppelberg & Ralf Korn, 2001. "Optimal Portfolios with Bounded Capital at Risk," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 365-384, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    2. Traian A. Pirvu & Gordan Zitkovic, 2007. "Maximizing the Growth Rate under Risk Constraints," Papers 0706.0480, arXiv.org.
    3. Thai Nguyen, 2016. "Optimal investment and consumption with downside risk constraint in jump-diffusion models," Papers 1604.05584, arXiv.org.
    4. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    5. Claudia Kluppelberg & Serguei Pergamenchtchikov, 2010. "Optimal consumption and investment with bounded downside risk for power utility functions," Papers 1002.2487, arXiv.org.
    6. Traian A. Pirvu & Gordan Žitković, 2009. "Maximizing The Growth Rate Under Risk Constraints," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 423-455, July.
    7. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    8. Z. F. Li & H. Yang & X. T. Deng, 2007. "Optimal Dynamic Portfolio Selection with Earnings-at-Risk," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 459-473, March.
    9. Donatien Hainaut, 2009. "Dynamic asset allocation under VaR constraint with stochastic interest rates," Annals of Operations Research, Springer, vol. 172(1), pages 97-117, November.
    10. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
    11. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    12. Junhong Du & Zhiming Li & Lijun Wu, 2019. "Optimal Stop-Loss Reinsurance Under the VaR and CTE Risk Measures: Variable Transformation Method," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1133-1151, March.
    13. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    14. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    15. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    16. Fangyuan Zhang, 2023. "Non-concave portfolio optimization with average value-at-risk," Mathematics and Financial Economics, Springer, volume 17, number 3, February.
    17. Zhang, Qingye & Gao, Yan, 2016. "Optimal consumption—portfolio problem with CVaR constraints," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 516-521.
    18. José Santiago Fajardo Barbachan & Aquiles Rocha de Farias & José Renato Haas Ornelas, 2008. "A Goodness-of-Fit Test with Focus on Conditional Value at Risk," Brazilian Review of Finance, Brazilian Society of Finance, vol. 6(2), pages 139-155.
    19. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    20. Manganelli, Simone, 2007. "Asset allocation by penalized least squares," Working Paper Series 723, European Central Bank.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1002.2486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.