IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0910.5101.html
   My bibliography  Save this paper

Optimal partial hedging in a discrete-time market as a knapsack problem

Author

Listed:
  • Peter G. Lindberg

Abstract

We present a new approach for studying the problem of optimal hedging of a European option in a finite and complete discrete-time market model. We consider partial hedging strategies that maximize the success probability or minimize the expected shortfall under a cost constraint and show that these problems can be treated as so called knapsack problems, which are a widely researched subject in linear programming. This observation gives us better understanding of the problem of optimal hedging in discrete time.

Suggested Citation

  • Peter G. Lindberg, 2009. "Optimal partial hedging in a discrete-time market as a knapsack problem," Papers 0910.5101, arXiv.org.
  • Handle: RePEc:arx:papers:0910.5101
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0910.5101
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gino Favero & Tiziano Vargiolu, 2006. "Shortfall risk minimising strategies in the binomial model: characterisation and convergence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 237-253, October.
    2. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    3. Gino Favero, 2001. "Shortfall risk minimization under model uncertainty in the binomial case: adaptive and robust approaches," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 53(3), pages 493-503, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Lindberg, 2010. "Optimal partial hedging in a discrete-time market as a knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 433-451, December.
    2. Barbara Trivellato, 2009. "Replication and shortfall risk in a binomial model with transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 1-26, March.
    3. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    4. Iida, Hiroshi, 2011. "How to solve the collapsing subset-sum problem revisited," ビジネス創造センターディスカッション・ペーパー (Discussion papers of the Center for Business Creation) 10252/4432, Otaru University of Commerce.
    5. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    6. Herweg, Fabian & Müller, Daniel, 2008. "The Optimality of Simple Contracts: Moral Hazard and Loss Aversion," Bonn Econ Discussion Papers 17/2008, University of Bonn, Bonn Graduate School of Economics (BGSE).
    7. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    8. B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.
    9. Teresa Estañ & Natividad Llorca & Ricardo Martínez & Joaquín Sánchez-Soriano, 2020. "On the difficulty of budget allocation in claims problems with indivisible items of different prices," ThE Papers 20/09, Department of Economic Theory and Economic History of the University of Granada..
    10. Teresa Estañ & Natividad Llorca & Ricardo Martínez & Joaquín Sánchez-Soriano, 2021. "On the Difficulty of Budget Allocation in Claims Problems with Indivisible Items and Prices," Group Decision and Negotiation, Springer, vol. 30(5), pages 1133-1159, October.
    11. Shabtay, Dvir, 2022. "Single-machine scheduling with machine unavailability periods and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 296(2), pages 423-439.
    12. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2023. "Features for the 0-1 knapsack problem based on inclusionwise maximal solutions," European Journal of Operational Research, Elsevier, vol. 311(1), pages 36-55.
    13. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    14. Christoph Buchheim & Dorothee Henke & Jannik Irmai, 2022. "The Stochastic Bilevel Continuous Knapsack Problem with Uncertain Follower’s Objective," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 521-542, August.
    15. Cedric A. Lehmann & Christiane B. Haubitz & Andreas Fügener & Ulrich W. Thonemann, 2022. "The risk of algorithm transparency: How algorithm complexity drives the effects on the use of advice," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3419-3434, September.
    16. Yanhong Feng & Xu Yu & Gai-Ge Wang, 2019. "A Novel Monarch Butterfly Optimization with Global Position Updating Operator for Large-Scale 0-1 Knapsack Problems," Mathematics, MDPI, vol. 7(11), pages 1-31, November.
    17. Taylan İlhan & Seyed M. R. Iravani & Mark S. Daskin, 2011. "TECHNICAL NOTE---The Adaptive Knapsack Problem with Stochastic Rewards," Operations Research, INFORMS, vol. 59(1), pages 242-248, February.
    18. M. Eric Johnson & Margaret L. Brandeau, 1999. "Design of an Automated Shop Floor Material Handling System with Inventory Considerations," Operations Research, INFORMS, vol. 47(1), pages 65-80, February.
    19. Altay, Nezih & Robinson Jr., Powell E. & Bretthauer, Kurt M., 2008. "Exact and heuristic solution approaches for the mixed integer setup knapsack problem," European Journal of Operational Research, Elsevier, vol. 190(3), pages 598-609, November.
    20. Bian, Zheyong & Bai, Yun & Douglas, W. Scott & Maher, Ali & Liu, Xiang, 2022. "Multi-year planning for optimal navigation channel dredging and dredged material management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0910.5101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.