IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v59y2011i1p242-248.html
   My bibliography  Save this article

TECHNICAL NOTE---The Adaptive Knapsack Problem with Stochastic Rewards

Author

Listed:
  • Taylan İlhan

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

  • Seyed M. R. Iravani

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

  • Mark S. Daskin

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109)

Abstract

Given a set of items with associated deterministic weights and random rewards, the adaptive stochastic knapsack problem (adaptive SKP) maximizes the probability of reaching a predetermined target reward level when items are inserted sequentially into a capacitated knapsack before the reward of each item is realized. This model arises in resource allocation problems that permit or require sequential allocation decisions in a probabilistic setting. One particular application is in obsolescence inventory management. In this paper, the adaptive SKP is formulated as a dynamic programming (DP) problem for discrete random rewards. The paper also presents a heuristic that mixes adaptive and static policies to overcome the “curse of dimensionality” in the DP. The proposed heuristic is extended to problems with normally distributed random rewards. The heuristic can solve large problems quickly, and its solution always outperforms a static policy. The numerical study indicates that a near-optimal solution can be obtained by using an algorithm with limited look-ahead capabilities.

Suggested Citation

  • Taylan İlhan & Seyed M. R. Iravani & Mark S. Daskin, 2011. "TECHNICAL NOTE---The Adaptive Knapsack Problem with Stochastic Rewards," Operations Research, INFORMS, vol. 59(1), pages 242-248, February.
  • Handle: RePEc:inm:oropre:v:59:y:2011:i:1:p:242-248
    DOI: 10.1287/opre.1100.0857
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1100.0857
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1100.0857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anton J. Kleywegt & Jason D. Papastavrou, 2001. "The Dynamic and Stochastic Knapsack Problem with Random Sized Items," Operations Research, INFORMS, vol. 49(1), pages 26-41, February.
    2. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    3. Richard Van Slyke & Yi Young, 2000. "Finite Horizon Stochastic Knapsacks with Applications to Yield Management," Operations Research, INFORMS, vol. 48(1), pages 155-172, February.
    4. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.
    5. Mordechai I. Henig, 1990. "Risk Criteria in a Stochastic Knapsack Problem," Operations Research, INFORMS, vol. 38(5), pages 820-825, October.
    6. Robert L. Carraway & Robert L. Schmidt & Lawrence R. Weatherford, 1993. "An algorithm for maximizing target achievement in the stochastic knapsack problem with normal returns," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(2), pages 161-173, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Will Ma, 2018. "Improvements and Generalizations of Stochastic Knapsack and Markovian Bandits Approximation Algorithms," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 789-812, August.
    2. Keskin, Burcu B. & Griffin, Emily C. & Prell, Jonathan O. & Dilkina, Bistra & Ferber, Aaron & MacDonald, John & Hilend, Rowan & Griffis, Stanley & Gore, Meredith L., 2023. "Quantitative Investigation of Wildlife Trafficking Supply Chains: A Review," Omega, Elsevier, vol. 115(C).
    3. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2017. "A shortest-path-based approach for the stochastic knapsack problem with non-decreasing expected overfilling costs," Discussion Papers on Economics 9/2017, University of Southern Denmark, Department of Economics.
    4. Kai Chen & Sheldon M. Ross, 2014. "The burglar problem with multiple options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(5), pages 359-364, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian C. Dean & Michel X. Goemans & Jan Vondrák, 2008. "Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 945-964, November.
    2. Yasemin Merzifonluoglu & Joseph Geunes, 2021. "The Risk-Averse Static Stochastic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 931-948, July.
    3. Stefanie Kosuch & Abdel Lisser, 2010. "Upper bounds for the 0-1 stochastic knapsack problem and a B&B algorithm," Annals of Operations Research, Springer, vol. 176(1), pages 77-93, April.
    4. Feng, Youyi & Xiao, Baichun, 2006. "A continuous-time seat control model for single-leg flights with no-shows and optimal overbooking upper bound," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1298-1316, October.
    5. Alexander G. Nikolaev & Sheldon H. Jacobson, 2010. "Technical Note ---Stochastic Sequential Decision-Making with a Random Number of Jobs," Operations Research, INFORMS, vol. 58(4-part-1), pages 1023-1027, August.
    6. Pak, K. & Piersma, N., 2002. "airline revenue management," ERIM Report Series Research in Management ERS-2002-12-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. So, Mee Chi & Thomas, Lyn C. & Huang, Bo, 2016. "Lending decisions with limits on capital available: The polygamous marriage problem," European Journal of Operational Research, Elsevier, vol. 249(2), pages 407-416.
    8. Pak, K. & Piersma, N., 2002. "Airline revenue management: an overview of OR techniques 1982-2001," Econometric Institute Research Papers EI 2002-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Quante, R. & Fleischmann, M. & Meyr, H., 2009. "A Stochastic Dynamic Programming Approach to Revenue Management in a Make-to-Stock Production System," ERIM Report Series Research in Management ERS-2009-015-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Shelby Brumelle & Darius Walczak, 2003. "Dynamic Airline Revenue Management with Multiple Semi-Markov Demand," Operations Research, INFORMS, vol. 51(1), pages 137-148, February.
    11. Pak, K. & Dekker, R., 2004. "Cargo Revenue Management: Bid-Prices for a 0-1 Multi Knapsack Problem," ERIM Report Series Research in Management ERS-2004-055-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Grace Y. Lin & Yingdong Lu & David D. Yao, 2008. "The Stochastic Knapsack Revisited: Switch-Over Policies and Dynamic Pricing," Operations Research, INFORMS, vol. 56(4), pages 945-957, August.
    13. Guillermo Gallego & Michael Z. F. Li & Yan Liu, 2020. "Dynamic Nonlinear Pricing of Inventories over Finite Sales Horizons," Operations Research, INFORMS, vol. 68(3), pages 655-670, May.
    14. Alec Morton, 2006. "Structural properties of network revenue management models: An economic perspective," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 748-760, December.
    15. Grace Lin & Yingdong Lu & David Yao, 2007. "Stochastic Knapsack Problem Revisited: Switch-Over Policies and Dynamic Pricing," Papers 0708.1146, arXiv.org.
    16. Kannapha Amaruchkul & William L. Cooper & Diwakar Gupta, 2007. "Single-Leg Air-Cargo Revenue Management," Transportation Science, INFORMS, vol. 41(4), pages 457-469, November.
    17. Wai Hung Wong & Anming Zhang & Yer Van Hui & Lawrence C. Leung, 2009. "Optimal Baggage-Limit Policy: Airline Passenger and Cargo Allocation," Transportation Science, INFORMS, vol. 43(3), pages 355-369, August.
    18. Ulmer, Marlin W. & Thomas, Barrett W., 2020. "Meso-parametric value function approximation for dynamic customer acceptances in delivery routing," European Journal of Operational Research, Elsevier, vol. 285(1), pages 183-195.
    19. Chen, Kai & Ross, Sheldon M., 2014. "An adaptive stochastic knapsack problem," European Journal of Operational Research, Elsevier, vol. 239(3), pages 625-635.
    20. Jian Li & Amol Deshpande, 2019. "Maximizing Expected Utility for Stochastic Combinatorial Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 354-375, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:1:p:242-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.