IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0908.1677.html
   My bibliography  Save this paper

Most Efficient Homogeneous Volatility Estimators

Author

Listed:
  • A. Saichev
  • D. Sornette
  • V. Filimonov

Abstract

We present a comprehensive theory of homogeneous volatility (and variance) estimators of arbitrary stochastic processes that fully exploit the OHLC (open, high, low, close) prices. For this, we develop the theory of most efficient point-wise homogeneous OHLC volatility estimators, valid for any price processes. We introduce the "quasi-unbiased estimators", that can address any type of desirable constraints. The main tool of our theory is the parsimonious encoding of all the information contained in the OHLC prices for a given time interval in the form of the joint distributions of the high-minus-open, low-minus-open and close-minus-open values, whose analytical expression is derived exactly for Wiener processes with drift. The distributions can be calculated to yield the most efficient estimators associated with any statistical properties of the underlying log-price stochastic process. Applied to Wiener processes for log-prices with drift, we provide explicit analytical expressions for the most efficient point-wise volatility and variance estimators, based on the analytical expression of the joint distribution of the high-minus-open, low-minus-open and close-minus-open values. The efficiency of the new proposed estimators is favorably compared with that of the Garman-Klass, Roger-Satchell and maximum likelihood estimators.

Suggested Citation

  • A. Saichev & D. Sornette & V. Filimonov, 2009. "Most Efficient Homogeneous Volatility Estimators," Papers 0908.1677, arXiv.org.
  • Handle: RePEc:arx:papers:0908.1677
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0908.1677
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    2. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    3. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    4. Malik Magdon-Ismail & Amir Atiya, 2003. "A maximum likelihood approach to volatility estimation for a Brownian motion using high, low and close price data," Quantitative Finance, Taylor & Francis Journals, vol. 3(5), pages 376-384.
    5. Donald MacKenzie, 2006. "An Engine, Not a Camera: How Financial Models Shape Markets," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262134608, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreea Röthig & Andreas Röthig & Carl Chiarella, 2015. "On Candlestick-based Trading Rules Profitability Analysis via Parametric Bootstraps and Multivariate Pair-Copula based Models," Research Paper Series 362, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Alexander Saichev & Didier Sornette & Vladimir Filimonov & Fulvio Corsi, 2009. "Homogeneous Volatility Bridge Estimators," Papers 0912.1617, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Saichev & Didier Sornette & Vladimir Filimonov & Fulvio Corsi, 2009. "Homogeneous Volatility Bridge Estimators," Papers 0912.1617, arXiv.org.
    2. Lapinova, S. & Saichev, A. & Tarakanova, M., 2013. "Efficiency and probabilistic properties of bridge volatility estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1439-1451.
    3. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    4. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    5. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    6. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    7. A. Saichev & D. Sornette, 2011. "Time-Bridge Estimators of Integrated Variance," Papers 1108.2611, arXiv.org.
    8. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    9. Chuong Luong & Nikolai Dokuchaev, 2016. "Modeling Dependency Of Volatility On Sampling Frequency Via Delay Equations," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-21, June.
    10. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    11. Igor Kliakhandler, 2007. "Execution edge of pit traders and intraday price ranges of soft commodities," Applied Financial Economics, Taylor & Francis Journals, vol. 17(5), pages 343-350.
    12. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    13. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    14. Misaki, Hiroumi & Kunitomo, Naoto, 2015. "On robust properties of the SIML estimation of volatility under micro-market noise and random sampling," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 265-281.
    15. Bannouh, Karim & Martens, Martin & van Dijk, Dick, 2013. "Forecasting volatility with the realized range in the presence of noise and non-trading," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 535-551.
    16. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    17. Enrique Ter Horst & Abel Rodriguez & Henryk Gzyl & German Molina, 2012. "Stochastic volatility models including open, close, high and low prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 199-212, May.
    18. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    19. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    20. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0908.1677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.