IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1108.2611.html
   My bibliography  Save this paper

Time-Bridge Estimators of Integrated Variance

Author

Listed:
  • A. Saichev
  • D. Sornette

Abstract

We present a set of log-price integrated variance estimators, equal to the sum of open-high-low-close bridge estimators of spot variances within $n$ subsequent time-step intervals. The main characteristics of some of the introduced estimators is to take into account the information on the occurrence times of the high and low values. The use of the high's and low's of the bridge associated with the original process makes the estimators significantly more efficient that the standard realized variance estimators and its generalizations. Adding the information on the occurrence times of the high and low values improves further the efficiency of the estimators, much above those of the well-known realized variance estimator and those derived from the sum of Garman and Klass spot variance estimators. The exact analytical results are derived for the case where the underlying log-price process is an It\^o stochastic process. Our results suggests more efficient ways to record financial prices at intermediate frequencies.

Suggested Citation

  • A. Saichev & D. Sornette, 2011. "Time-Bridge Estimators of Integrated Variance," Papers 1108.2611, arXiv.org.
  • Handle: RePEc:arx:papers:1108.2611
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1108.2611
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    2. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    4. Alexander Saichev & Didier Sornette & Vladimir Filimonov & Fulvio Corsi, 2009. "Homogeneous Volatility Bridge Estimators," Papers 0912.1617, arXiv.org.
    5. Alexander SAICHEV & Didier SORNETTE & Vladimir FILIMONOV & Fulvio CORSI, 2009. "Homogeneous Volatility Bridge Estimators," Swiss Finance Institute Research Paper Series 09-46, Swiss Finance Institute.
    6. Jain, Satish (ed.), 2010. "Law and Economics," OUP Catalogue, Oxford University Press, number 9780198067733.
    7. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    8. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    9. Alex Saichev & Yannick Malevergne & Didier Sornette, 2010. "Theory of Zipf's Law and Beyond," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02946-2, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svetlana Lapinova & Alexander Saichev & Maria Tarakanova, 2012. "Volatility estimation based on extremes of the bridge (in Russian)," Quantile, Quantile, issue 10, pages 73-90, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lapinova, S. & Saichev, A. & Tarakanova, M., 2013. "Efficiency and probabilistic properties of bridge volatility estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1439-1451.
    2. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    3. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    4. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    5. Alexander Saichev & Didier Sornette & Vladimir Filimonov & Fulvio Corsi, 2009. "Homogeneous Volatility Bridge Estimators," Papers 0912.1617, arXiv.org.
    6. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    7. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    8. Sutton, Maxwell & Vasnev, Andrey L. & Gerlach, Richard, 2019. "Mixed interval realized variance: A robust estimator of stock price volatility," Econometrics and Statistics, Elsevier, vol. 11(C), pages 43-62.
    9. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    10. Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013. "The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
    11. Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2017. "Improving (E)GARCH forecasts with robust realized range measures: Evidence from international markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 631-658, October.
    12. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
    13. Vortelinos, Dimitrios I. & Lakshmi, Geeta, 2015. "Market risk of BRIC Eurobonds in the financial crisis period," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 295-310.
    14. Wei Kuang, 2021. "Conditional covariance matrix forecast using the hybrid exponentially weighted moving average approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1398-1419, December.
    15. Bertrand Maillet & Jean-Philippe Médecin & Thierry Michel, 2009. "High Watermarks of Market Risks," Post-Print halshs-00425585, HAL.
    16. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    17. Chuong Luong & Nikolai Dokuchaev, 2016. "Modeling Dependency Of Volatility On Sampling Frequency Via Delay Equations," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-21, June.
    18. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    19. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    20. Bannouh, Karim & Martens, Martin & van Dijk, Dick, 2013. "Forecasting volatility with the realized range in the presence of noise and non-trading," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 535-551.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1108.2611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.