IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v3y2003i5p376-384.html
   My bibliography  Save this article

A maximum likelihood approach to volatility estimation for a Brownian motion using high, low and close price data

Author

Listed:
  • Malik Magdon-Ismail
  • Amir Atiya

Abstract

Volatility plays an important role in derivatives pricing, asset allocation, and risk management, to name but a few areas. It is therefore crucial to make the utmost use of the scant information typically available in short time windows when estimating the volatility. We propose a volatility estimator using the high and the low information in addition to the close price, all of which are typically available to investors. The proposed estimator is based on a maximum likelihood approach. We present explicit formulae for the likelihood of the drift and volatility parameters when the underlying asset is assumed to follow a Brownian motion with constant drift and volatility. Our approach is to then maximize this likelihood to obtain the estimator of the volatility. While we present the method in the context of a Brownian motion, the general methodology is applicable whenever one can obtain the likelihood of the volatility parameter given the high, low and close information. We present simulations which indicate that our estimator achieves consistently better performance than existing estimators (that use the same information and assumptions) for simulated data. In addition, our simulations using real price data demonstrate that our method produces more stable estimates. We also consider the effects of quantized prices and discretized time.

Suggested Citation

  • Malik Magdon-Ismail & Amir Atiya, 2003. "A maximum likelihood approach to volatility estimation for a Brownian motion using high, low and close price data," Quantitative Finance, Taylor & Francis Journals, vol. 3(5), pages 376-384.
  • Handle: RePEc:taf:quantf:v:3:y:2003:i:5:p:376-384
    DOI: 10.1088/1469-7688/3/5/304
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1088/1469-7688/3/5/304
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1088/1469-7688/3/5/304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bastidon, Cécile & Jawadi, Fredj, 2024. "Trade fragmentation and volatility-of-volatility networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    2. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    3. Dilip Kumar, 2020. "Value-at-Risk in the Presence of Structural Breaks Using Unbiased Extreme Value Volatility Estimator," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 587-610, September.
    4. Igor Kliakhandler, 2007. "Execution edge of pit traders and intraday price ranges of soft commodities," Applied Financial Economics, Taylor & Francis Journals, vol. 17(5), pages 343-350.
    5. Lakshmi Padmakumari & S Maheswaran, 2016. "A Regression Based Approach to Capturing the Level Dependence in the Volatility of Stock Returns," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(12), pages 706-718, December.
    6. Enrique Ter Horst & Abel Rodriguez & Henryk Gzyl & German Molina, 2012. "Stochastic volatility models including open, close, high and low prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 199-212, May.
    7. Kumar, Dilip & Maheswaran, S., 2014. "Modeling and forecasting the additive bias corrected extreme value volatility estimator," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 166-176.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Padmakumari, Lakshmi & S., Maheswaran, 2017. "A new statistic to capture the level dependence in stock price volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 355-362.
    10. David William Witts & Emili Tortosa-Ausina & Iván Arribas, 2021. "The Irrational Market: Considering the effect of the online community Wall Street Bets on Financial Market Variables," Working Papers 2021/13, Economics Department, Universitat Jaume I, Castellón (Spain).
    11. Dilip Kumar, 2016. "Estimating and forecasting value-at-risk using the unbiased extreme value volatility estimator," Proceedings of Economics and Finance Conferences 3205528, International Institute of Social and Economic Sciences.
    12. Parthajit Kayal & S. Maheswaran, 2017. "Is USD-INR Really an Excessively Volatile Currency Pair?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(2), pages 329-342, June.
    13. Muneer Shaik & S. Maheswaran, 2019. "Robust Volatility Estimation with and Without the Drift Parameter," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 57-91, March.
    14. A. Saichev & D. Sornette & V. Filimonov, 2009. "Most Efficient Homogeneous Volatility Estimators," Papers 0908.1677, arXiv.org.
    15. Kumar, Dilip & Maheswaran, S., 2014. "A reflection principle for a random walk with implications for volatility estimation using extreme values of asset prices," Economic Modelling, Elsevier, vol. 38(C), pages 33-44.
    16. Dilip Kumar, 2018. "Modeling and Forecasting Unbiased Extreme Value Volatility Estimator in Presence of Leverage Effect," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 313-335, June.
    17. Maheswaran, S. & Kumar, Dilip, 2013. "An automatic bias correction procedure for volatility estimation using extreme values of asset prices," Economic Modelling, Elsevier, vol. 33(C), pages 701-712.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:3:y:2003:i:5:p:376-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.