The affine LIBOR models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
- Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466, October.
- Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
- Maria Siopacha & Josef Teichmann, 2007. "Weak and Strong Taylor methods for numerical solutions of stochastic differential equations," Papers 0704.0745, arXiv.org.
- Martin Keller-Ressel & Thomas Steiner, 2008. "Yield curve shapes and the asymptotic short rate distribution in affine one-factor models," Finance and Stochastics, Springer, vol. 12(2), pages 149-172, April.
- Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
- Robert Jarrow, 2017. "Derivatives," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 3, pages 19-28, World Scientific Publishing Co. Pte. Ltd..
- Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
- Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Antonis Papapantoleon, 2009. "Old and new approaches to LIBOR modeling," Papers 0910.4941, arXiv.org, revised Apr 2010.
- Ernst Eberlein & Kathrin Glau & Antonis Papapantoleon, 2008. "Analysis of Fourier transform valuation formulas and applications," Papers 0809.3405, arXiv.org, revised Sep 2009.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wolfgang Kluge & Antonis Papapantoleon, 2009. "On the valuation of compositions in L\'evy term structure models," Papers 0902.3456, arXiv.org.
- Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013.
"A flexible matrix Libor model with smiles,"
Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
- Jos'e Da Fonseca & Alessandro Gnoatto & Martino Grasselli, 2012. "A flexible matrix Libor model with smiles," Papers 1203.4786, arXiv.org.
- L. Steinruecke & R. Zagst & A. Swishchuk, 2015. "The Markov-switching jump diffusion LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 15(3), pages 455-476, March.
- Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-Lévi approximations to Lévi driven LIBOR models," CREATES Research Papers 2011-22, Department of Economics and Business Economics, Aarhus University.
- Antonis Papapantoleon & Maria Siopacha, 2009. "Strong Taylor approximation of stochastic differential equations and application to the L\'evy LIBOR model," Papers 0906.5581, arXiv.org, revised Oct 2010.
- Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-L\'evy approximations to L\'evy driven LIBOR models," Papers 1106.0866, arXiv.org, revised Jan 2012.
- Antonis Papapantoleon, 2010. "Old and new approaches to LIBOR modeling," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 257-275.
- Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
- S. Galluccio & J.‐M. Ly & Z. Huang & O. Scaillet, 2007.
"Theory And Calibration Of Swap Market Models,"
Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 111-141, January.
- S.Galluccio & Z. Huang & J.-M. Ly & O. Scaillet, 2005. "Theory and Calibration of Swap Market Models," FAME Research Paper Series rp107, International Center for Financial Asset Management and Engineering.
- Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
- Antonis Papapantoleon, 2009. "Old and new approaches to LIBOR modeling," Papers 0910.4941, arXiv.org, revised Apr 2010.
- A. M. Ferreiro & J. A. Garc'ia & J. G. L'opez-Salas & C. V'azquez, 2024. "SABR/LIBOR market models: pricing and calibration for some interest rate derivatives," Papers 2408.01470, arXiv.org.
- Denis Belomestny & John Schoenmakers, 2010.
"A jump-diffusion Libor model and its robust calibration,"
Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 529-546.
- Belomestny, Denis & Schoenmakers, John G. M., 2006. "A jump-diffusion Libor model and its robust calibration," SFB 649 Discussion Papers 2006-037, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Antonis Papapantoleon, 2010. "Old and new approaches to LIBOR modeling," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(3), pages 257-275, August.
- Wolfgang Kluge & Antonis Papapantoleon, 2009. "On the valuation of compositions in Levy term structure models," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 951-959.
- Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
- Eymen Errais & Fabio Mercurio, 2005. "Yes, Libor Models can capture Interest Rate Derivatives Skew : A Simple Modelling Approach," Computing in Economics and Finance 2005 192, Society for Computational Economics.
- Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
- Kokholm, Thomas, 2008. "Pricing of Traffic Light Options and other Correlation Derivatives," Finance Research Group Working Papers F-2008-01, University of Aarhus, Aarhus School of Business, Department of Business Studies.
- Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0904.0555. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.