IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0901.2275.html
   My bibliography  Save this paper

Volatility forecasts and the at-the-money implied volatility: a multi-components ARCH approach and its relation with market models

Author

Listed:
  • Gilles Zumbach

Abstract

For a given time horizon DT, this article explores the relationship between the realized volatility (the volatility that will occur between t and t+DT), the implied volatility (corresponding to at-the-money option with expiry at t+DT), and several forecasts for the volatility build from multi-scales linear ARCH processes. The forecasts are derived from the process equations, and the parameters set a priori. An empirical analysis across multiple time horizons DT shows that a forecast provided by an I-GARCH(1) process (1 time scale) does not capture correctly the dynamic of the realized volatility. An I-GARCH(2) process (2 time scales, similar to GARCH(1,1)) is better, while a long memory LM-ARCH process (multiple time scales) replicates correctly the dynamic of the realized volatility and delivers consistently good forecast for the implied volatility. The relationship between market models for the forward variance and the volatility forecasts provided by ARCH processes is investigated. The structure of the forecast equations is identical, but with different coefficients. Yet the process equations for the variance are very different (postulated for a market model, induced by the process equations for an ARCH model), and not of any usual diffusive type when derived from ARCH.

Suggested Citation

  • Gilles Zumbach, 2009. "Volatility forecasts and the at-the-money implied volatility: a multi-components ARCH approach and its relation with market models," Papers 0901.2275, arXiv.org.
  • Handle: RePEc:arx:papers:0901.2275
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0901.2275
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Paul Lynch & Gilles Zumbach, 2003. "Market heterogeneities and the causal structure of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 320-331.
    3. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    4. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    5. Gilles Zumbach & Paul Lynch, 2001. "Heterogeneous volatility cascade in financial markets," Papers cond-mat/0105162, arXiv.org.
    6. Zumbach, Gilles & Lynch, Paul, 2001. "Heterogeneous volatility cascade in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 298(3), pages 521-529.
    7. Gilles Zumbach, 2004. "Volatility processes and volatility forecast with long memory," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 70-86.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilles Zumbach, 2007. "Time reversal invariance in finance," Papers 0708.4022, arXiv.org.
    2. Omar El Euch & Jim Gatheral & Radov{s} Radoiv{c}i'c & Mathieu Rosenbaum, 2018. "The Zumbach effect under rough Heston," Papers 1809.02098, arXiv.org.
    3. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    4. David Mcmillan & Alan Speight, 2008. "Long-memory in high-frequency exchange rate volatility under temporal aggregation," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 251-261.
    5. Gilles Zumbach, 2010. "Volatility conditional on price trends," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 431-442.
    6. Gilles Zumbach, 2011. "Characterizing heteroskedasticity," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1357-1369, October.
    7. Daniel Fricke & Thomas Lux, 2015. "The effects of a financial transaction tax in an artificial financial market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(1), pages 119-150, April.
    8. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Fred Benth & Jukka Lempa, 2014. "Optimal portfolios in commodity futures markets," Finance and Stochastics, Springer, vol. 18(2), pages 407-430, April.
    10. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    11. Xixuan Han & Boyu Wei & Hailiang Yang, 2018. "Index Options And Volatility Derivatives In A Gaussian Random Field Risk-Neutral Density Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-41, June.
    12. Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.
    13. Ramazan Gencay & Nikola Gradojevic & Faruk Selcuk & Brandon Whitcher, 2010. "Asymmetry of information flow between volatilities across time scales," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 895-915.
    14. Elena Andreou & Eric Ghysels, 2014. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 168-171, April.
    15. Challet, Damien & Peirano, Pier Paolo, 2008. "The ups and downs of the renormalization group applied to financial time series," MPRA Paper 9770, University Library of Munich, Germany.
    16. Andrew Papanicolaou, 2018. "Consistent Time-Homogeneous Modeling of SPX and VIX Derivatives," Papers 1812.05859, arXiv.org, revised Mar 2022.
    17. Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
    18. Julien Idier, 2011. "Long-term vs. short-term comovements in stock markets: the use of Markov-switching multifractal models," The European Journal of Finance, Taylor & Francis Journals, vol. 17(1), pages 27-48.
    19. Yalc{c}in Aktar & Erik Taflin, 2014. "A remark on smooth solutions to a stochastic control problem with a power terminal cost function and stochastic volatilities," Papers 1405.3566, arXiv.org.
    20. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0901.2275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.