IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0801.4941.html
   My bibliography  Save this paper

Hedging strategies and minimal variance portfolios for European and exotic options in a Levy market

Author

Listed:
  • Wing Yan Yip
  • Sofia Olhede
  • David Stephens

Abstract

This paper presents hedging strategies for European and exotic options in a Levy market. By applying Taylor's Theorem, dynamic hedging portfolios are con- structed under different market assumptions, such as the existence of power jump assets or moment swaps. In the case of European options or baskets of European options, static hedging is implemented. It is shown that perfect hedging can be achieved. Delta and gamma hedging strategies are extended to higher moment hedging by investing in other traded derivatives depending on the same underlying asset. This development is of practical importance as such other derivatives might be readily available. Moment swaps or power jump assets are not typically liquidly traded. It is shown how minimal variance portfolios can be used to hedge the higher order terms in a Taylor expansion of the pricing function, investing only in a risk-free bank account, the underlying asset and potentially variance swaps. The numerical algorithms and performance of the hedging strategies are presented, showing the practical utility of the derived results.

Suggested Citation

  • Wing Yan Yip & Sofia Olhede & David Stephens, 2008. "Hedging strategies and minimal variance portfolios for European and exotic options in a Levy market," Papers 0801.4941, arXiv.org, revised Oct 2008.
  • Handle: RePEc:arx:papers:0801.4941
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0801.4941
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wim Schoutens, 2005. "Moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 525-530.
    2. José Manuel Corcuera & David Nualart & Wim Schoutens, 2005. "Completion of a Lévy market by power-jump assets," Finance and Stochastics, Springer, vol. 9(1), pages 109-127, January.
    3. Windcliff, H. & Forsyth, P.A. & Vetzal, K.R., 2006. "Pricing methods and hedging strategies for volatility derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 409-431, February.
    4. Philip Protter & Michael Dritschel, 1999. "Complete markets with discontinuous security price," Finance and Stochastics, Springer, vol. 3(2), pages 203-214.
    5. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yip, Wing & Stephens, David & Olhede, Sofia, 2008. "Hedging strategies and minimal variance portfolios for European and exotic options in a Levy market," MPRA Paper 11176, University Library of Munich, Germany.
    2. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Pricing and hedging contingent claims using variance and higher order moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 531-550, April.
    3. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    4. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    5. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    6. Carlo Acerbi & Giacomo Scandolo, 2008. "Liquidity risk theory and coherent measures of risk," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 681-692.
    7. Juan Arismendi, 2014. "A Multi-Asset Option Approximation for General Stochastic Processes," ICMA Centre Discussion Papers in Finance icma-dp2014-03, Henley Business School, University of Reading.
    8. Michail Anthropelos & Gordan Zitkovic, 2009. "Partial Equilibria with Convex Capital Requirements: Existence, Uniqueness and Stability," Papers 0901.3318, arXiv.org.
    9. Carole Bernard & Zhenyu Cui, 2013. "Prices and Asymptotics for Discrete Variance Swaps," Papers 1305.7092, arXiv.org.
    10. Saeed Marzban & Erick Delage & Jonathan Yumeng Li, 2020. "Equal Risk Pricing and Hedging of Financial Derivatives with Convex Risk Measures," Papers 2002.02876, arXiv.org, revised Sep 2020.
    11. Zhu, Song-Ping & Lian, Guang-Hua, 2015. "Pricing forward-start variance swaps with stochastic volatility," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 920-933.
    12. Akihiko Takahashi & Yukihiro Tsuzuki & Akira Yamazaki, 2009. "Hedging European Derivatives with the Polynomial Variance Swap under Uncertain Volatility Environments," CARF F-Series CARF-F-161, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
    14. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    15. Jocelyne Bion-Nadal, 2007. "Bid-Ask Dynamic Pricing in Financial Markets with Transaction Costs and Liquidity Risk," Papers math/0703074, arXiv.org.
    16. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
    17. Takuji Arai & Masaaki Fukasawa, 2011. "Convex risk measures for good deal bounds," Papers 1108.1273, arXiv.org.
    18. Akihiko Takahashi & Yukihiro Tsuzuki & Akira Yamazaki, 2009. "Hedging European Derivatives with the Polynomial Variance Swap under Uncertain Volatility Environments," CIRJE F-Series CIRJE-F-653, CIRJE, Faculty of Economics, University of Tokyo.
    19. Jaimungal, Sebastian & Young, Virginia R., 2005. "Pricing equity-linked pure endowments with risky assets that follow Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 329-346, June.
    20. Wang, Yumin, 2009. "Quantile hedging for guaranteed minimum death benefits," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 449-458, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0801.4941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.