On the Correlation Matrix of the Discrete Fourier Transform and the Fast Solution of Large Toeplitz Systems for Long-Memory Time Series
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006.
"Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
- Rohit Deo & Clifford Hurvich & Yi Lu, 2005. "Forecasting Realized Volatility Using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment," Econometrics 0501002, University Library of Munich, Germany.
- Rebecca J. Sela & Clifford M. Hurvich, 2009. "Computationally efficient methods for two multivariate fractionally integrated models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 631-651, November.
- Pai, Jeffrey & Ravishanker, Nalini, 2009. "A multivariate preconditioned conjugate gradient approach for maximum likelihood estimation in vector long memory processes," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1282-1289, May.
- Andreas Noack Jensen & Morten Ørregaard Nielsen, 2014.
"A Fast Fractional Difference Algorithm,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 428-436, August.
- Andreas Noack Jensen & Morten Ø. Nielsen, 2013. "A Fast Fractional Difference Algorithm," Working Paper 1307, Economics Department, Queen's University.
- Andreas Noack Jensen & Morten Ørregaard Nielsen, 2013. "A fast fractional difference algorithm," Discussion Papers 13-04, University of Copenhagen. Department of Economics.
- McLeod, A. Ian & Yu, Hao & Krougly, Zinovi L., 2007. "Algorithms for Linear Time Series Analysis: With R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i05).
- Rohit Deo & Meng-Chen Hsieh & Clifford M. Hurvich & Philippe Soulier, 2007. "Long Memory in Nonlinear Processes," Papers 0706.1836, arXiv.org.
- Zevallos, Mauricio & Palma, Wilfredo, 2013. "Minimum distance estimation of ARFIMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 242-256.
- Pai, Jeffrey & Ravishanker, Nalini, 2015. "Fast approximate likelihood evaluation for stable VARFIMA processes," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 160-168.
- Rohit Deo & Mengchen Hsieh & Clifford Hurvich, 2005. "Tracing the Source of Long Memory in Volatility," Econometrics 0501005, University Library of Munich, Germany.
- repec:jss:jstsof:23:i05 is not listed on IDEAS
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:101:y:2006:p:812-822. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.