IDEAS home Printed from https://ideas.repec.org/p/aob/wpaper/17.html
   My bibliography  Save this paper

Построение большой байесовской авторегрессионной модели для Казахстана // Building a Large Bayesian Vector Autoregression Model for Kazakhstan

Author

Listed:
  • Константин Орлов // Konstantin Orlov

    (National Bank of Kazakhstan)

Abstract

В целях прогнозирования основных макропоказателей мировыми центральными банками, а также различными международными организациями, в последние годы активно развивался и применялся инструментарий байесовских векторных авторегрессионных моделей. В настоящей работе была проведена оценка их эффективности в прогнозировании экономической активности, инфляции, обменного курса и ставки TONIA в Казахстане для различных горизонтов до 1 года в сравнении с более простыми моделями и показана целесообразность применения данных моделей. Поиск оптимальных параметров оцениваемой BVAR-модели проходил на основе точности прогнозов на тестовой выборке. // With a view to forecast the key macro indicators, in the recent years, the central banks worldwide as well as different international organizations have been actively developing and using the tools of the Bayesian vector autoregression models. This Paper presents the conducted assessment of their effectiveness in forecasting the economic activity, inflation, exchange rate and TONIA rate in Kazakhstan for various horizons up to one year in comparison with simpler models; it also shows the practicability of using such models. The search for optimum parameters of the estimated BVAR-model was conducted on the basis of forecast accuracy on the test sample.

Suggested Citation

  • Константин Орлов // Konstantin Orlov, 2021. "Построение большой байесовской авторегрессионной модели для Казахстана // Building a Large Bayesian Vector Autoregression Model for Kazakhstan," Working Papers #2021-1, National Bank of Kazakhstan.
  • Handle: RePEc:aob:wpaper:17
    as

    Download full text from publisher

    File URL: https://nationalbank.kz/file/download/65031
    File Function: Russian language version
    Download Restriction: no

    File URL: https://nationalbank.kz/file/download/65545
    File Function: English language version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lomivorotov, Rodion, 2015. "Bayesian estimation of monetary policy in Russia," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 41-63.
    2. Демешев Борис Борисович & Малаховская Оксана Анатольевна, 2016. "Макроэкономическое Прогнозирование С Помощью Bvar Литтермана," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 20(4), pages 691-710.
    3. Demeshev, Boris & Malakhovskaya, Oxana, 2016. "BVAR mapping," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 118-141.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Tiunova G. & М. Тиунова Г., 2018. "Влияние Внешних Шоков На Российскую Экономику // The Impact Of External Shocks On The Russian Economy," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(4), pages 146-170.
    2. Anton I. Votinov & Ivan P. Stankevich, 2017. "VAR Approach to Efficiency Evaluation of Fiscal Economy Encouragement Measures," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 64-74, December.
    3. И Управления Мир Экономики, 2017. "Байесовский подход к анализу влияния монетарной политики на макроэкономические показатели России. Bayesian approach to the analysis of monetary policy impact on Russian macroeconomics indicators," Мир экономики и управления // Вестник НГУ. Cерия: Cоциально-экономические науки, Socionet;Новосибирский государственный университет, vol. 17(4), pages 53-70.
    4. Mariya A. Shchepeleva, 2020. "Modeling the Balance Sheet Channel of Monetary Transmission in Russia," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 2, pages 39-56, April.
    5. A. Polbin., 2017. "Econometric estimation of the impact of oil prices shock on the Russian economy in VECM model," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 10.
    6. Egorov, Aleksei V. (Егоров, Алексей В.) & Borzykh, Olga A. (Борзых, Ольга А.), 2018. "Asymmetric Interest Rate Pass-Through in Russia [Асимметрия Процентного Канала Денежной Трансмиссии В России]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 1, pages 92-121, February.
    7. Shevelev A.A., 2017. "Bayesian approach to evaluate the impact of external shocks on Russian macroeconomics indicators," World of economics and management / Vestnik NSU. Series: Social and Economics Sciences, Socionet, vol. 17(1), pages 26-40.
    8. O. Borzykh., 2017. "The impact of banks’ capital adequacy ratio on bank lending channel of monetary transmission in Russia," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 7.
    9. Демешев Борис Борисович & Малаховская Оксана Анатольевна, 2016. "Макроэкономическое Прогнозирование С Помощью Bvar Литтермана," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 20(4), pages 691-710.
    10. Борзых Ольга Алексеевна, 2016. "«Антиэффект» Ликвидности В Российской Банковской Системе," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 20(3), pages 377-414.
    11. Salmanov, Oleg & Zaernjuk, Victor & Lopatina, Olga & Drachena, Irina & Vikulina, Evgeniya, 2016. "Investigating the Impact of Monetary Policy using the Vector Autoregression Method," MPRA Paper 112280, University Library of Munich, Germany, revised 01 Jun 2016.
    12. Andrey Feliksovich Bedin & Alexander Vladimirovich Kulikov & Andrey Vladimirovich Polbin, 2021. "A Markov Switching VECM Model for Russian Real GDP, Real Exchange Rate and Oil Prices," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 402-412.
    13. Artur Sharafutdinov, 2023. "Forecasting Russian GDP, Inflation, Interest Rate, and Exchange Rate Using DSGE-VAR Model," Russian Journal of Money and Finance, Bank of Russia, vol. 82(3), pages 62-86, September.
    14. Daniil Lomonosov & Andrey Polbin & Nikita Fokin, 2021. "The Impact of Global Economic Activity, Oil Supply and Speculative Oil Shocks on the Russian Economy," HSE Economic Journal, National Research University Higher School of Economics, vol. 25(2), pages 227-262.
    15. Borzykh, Olga, 2016. "Bank lending channel in Russia: A TVP-FAVAR approach," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 96-117.
    16. M. Tiunova G. & М. Тиунова Г., 2018. "Моделирование Эффекта Переноса Валютного Курса На Цены В России // Modeling The Transfer Effect Of Exchange Rate On Prices In Russia," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(3), pages 136-154.
    17. Lomonosov, Daniil & Polbin, Andrey & Fokin, Nikita, 2020. "Влияние Шоков Мировой Деловой Активности, Предложения Нефти И Спекулятивных Нефтяных Шоков На Экономику Рф [The impact of global economic activity, oil supply and speculative oil shocks on the Russ," MPRA Paper 106019, University Library of Munich, Germany.

    More about this item

    Keywords

    прогнозы макроэкономических показателей; байесовские векторные авторегрессионные модели; байесовские методы; forecasts of macroeconomic indicators; Bayesian vector autoregression models; Bayesian methods;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aob:wpaper:17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Saida Agambayeva (email available below). General contact details of provider: https://edirc.repec.org/data/nbkgvkz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.