IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2013033.html
   My bibliography  Save this paper

I-optimal mixture designs

Author

Listed:
  • GOOS, Peter
  • JONES, Bradley
  • SYAFITRI, Utami

Abstract

In mixture experiments, the factors under study are proportions of the ingredients of a mixture. The special nature of the factors in a mixture experiment necessitates specific types of regression models, and specific types of experimental designs. Although mixture experiments usually are intended to predict the response(s) for all possible formulations of the mixture and to identify optimal proportions for each of the ingredients, little research has been done concerning their I-optimal design. This is surprising given that I-optimal designs minimize the average variance of prediction and, therefore, seem more appropriate for mixture experiments than the commonly used D-optimal designs, which focus on a precise model estimation rather than precise predictions. In this paper, we provide the first detailed overview of the literature on the I-optimal design of mixture experiments and identify several contradictions. For the second-order, special cubic and the degree models, we present I-optimal continuous designs and contrast them with the published results. We also study exact I-optimal designs, and compare them in detail to continuous I-optimal designs and to D-optimal designs. One striking result of our work is that the performance of D-optimal designs in terms of the I-optimality criterion very strongly depends on which of the D-optimal design points are replicated.

Suggested Citation

  • GOOS, Peter & JONES, Bradley & SYAFITRI, Utami, 2013. "I-optimal mixture designs," Working Papers 2013033, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2013033
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docman/irua/595fdf/f3198e36.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuangzhe Liu & Heinz Neudecker, 1997. "Experiments with mixtures: Optimal allocations for becker’s models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 45(1), pages 53-66, January.
    2. JONES, Bradley & GOOS, Peter, 2012. "I-optimal versus D-optimal split-plot response surface designs," Working Papers 2012002, University of Antwerp, Faculty of Business and Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. SYAFITRI, Utami & SARTONO, Bagus & GOOS, Peter, 2015. "D- and I-optimal design of mixture experiments in the presence of ingredient availability constraints," Working Papers 2015003, University of Antwerp, Faculty of Business and Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Goos & Bradley Jones & Utami Syafitri, 2016. "I-Optimal Design of Mixture Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 899-911, April.
    2. Mandal, N.K. & Pal, Manisha & Aggarwal, M.L., 2012. "Pseudo-Bayesian A-optimal designs for estimating the point of maximum in component-amount Darroch–Waller mixture model," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1088-1094.
    3. Marcin Dutka & Mario Ditaranto & Terese Løvås, 2015. "Application of a Central Composite Design for the Study of NO x Emission Performance of a Low NO x Burner," Energies, MDPI, vol. 8(5), pages 1-22, April.
    4. SYAFITRI, Utami & SARTONO, Bagus & GOOS, Peter, 2015. "D- and I-optimal design of mixture experiments in the presence of ingredient availability constraints," Working Papers 2015003, University of Antwerp, Faculty of Business and Economics.
    5. Borrotti, Matteo & Sambo, Francesco & Mylona, Kalliopi, 2023. "Multi-objective optimisation of split-plot designs," Econometrics and Statistics, Elsevier, vol. 28(C), pages 163-172.
    6. Nripes Mandal & Manisha Pal & Bikas Sinha & Premadhis Das, 2015. "Optimum mixture designs in a restricted region," Statistical Papers, Springer, vol. 56(1), pages 105-119, February.
    7. Husain, Bushra & Aslam, Fariha, 2024. "Weighted Simplex Centroid Mixture Experiments for third order Becker’s models: The R-optimal approach," Statistics & Probability Letters, Elsevier, vol. 213(C).
    8. ARNOUTS, Heidi & GOOS, Peter, 2013. "Staggered-level designs for response surface modeling," Working Papers 2013027, University of Antwerp, Faculty of Business and Economics.
    9. Yahaya, Ahmad Zubair & Somalu, Mahendra Rao & Muchtar, Andanastuti & Sulaiman, Shaharin Anwar & Wan Daud, Wan Ramli, 2019. "Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor," Energy, Elsevier, vol. 175(C), pages 931-940.
    10. Sambo, Francesco & Borrotti, Matteo & Mylona, Kalliopi, 2014. "A coordinate-exchange two-phase local search algorithm for the D- and I-optimal designs of split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1193-1207.
    11. Elena Holl & Anastasia Oskina & Urs Baier & Andreas Lemmer, 2023. "Optimization of Thermodynamic Parameters of the Biological Hydrogen Methanation in a Trickle-Bed Reactor for the Conditioning of Biogas to Biomethane," Energies, MDPI, vol. 16(12), pages 1-13, June.
    12. Haoyu Wang & Chongqi Zhang, 2022. "The mixture design threshold accepting algorithm for generating $$\varvec{D}$$ D -optimal designs of the mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 345-371, April.
    13. Hilgers, Ralf-Dieter, 2000. "D-optimal design for Becker's minimum polynomial," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 175-179, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2013033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.