IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v45y1997i1p53-66.html
   My bibliography  Save this article

Experiments with mixtures: Optimal allocations for becker’s models

Author

Listed:
  • Shuangzhe Liu
  • Heinz Neudecker

Abstract

No abstract is available for this item.

Suggested Citation

  • Shuangzhe Liu & Heinz Neudecker, 1997. "Experiments with mixtures: Optimal allocations for becker’s models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 45(1), pages 53-66, January.
  • Handle: RePEc:spr:metrik:v:45:y:1997:i:1:p:53-66
    DOI: 10.1007/BF02717093
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02717093
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02717093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. GOOS, Peter & JONES, Bradley & SYAFITRI, Utami, 2013. "I-optimal mixture designs," Working Papers 2013033, University of Antwerp, Faculty of Business and Economics.
    2. Haoyu Wang & Chongqi Zhang, 2022. "The mixture design threshold accepting algorithm for generating $$\varvec{D}$$ D -optimal designs of the mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 345-371, April.
    3. Hilgers, Ralf-Dieter, 2000. "D-optimal design for Becker's minimum polynomial," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 175-179, August.
    4. Peter Goos & Bradley Jones & Utami Syafitri, 2016. "I-Optimal Design of Mixture Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 899-911, April.
    5. Mandal, N.K. & Pal, Manisha & Aggarwal, M.L., 2012. "Pseudo-Bayesian A-optimal designs for estimating the point of maximum in component-amount Darroch–Waller mixture model," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1088-1094.
    6. Nripes Mandal & Manisha Pal & Bikas Sinha & Premadhis Das, 2015. "Optimum mixture designs in a restricted region," Statistical Papers, Springer, vol. 56(1), pages 105-119, February.
    7. Husain, Bushra & Aslam, Fariha, 2024. "Weighted Simplex Centroid Mixture Experiments for third order Becker’s models: The R-optimal approach," Statistics & Probability Letters, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:45:y:1997:i:1:p:53-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.