IDEAS home Printed from https://ideas.repec.org/p/ajk/ajkpbs/062.html
   My bibliography  Save this paper

Germany's Electricity Market Reform Should Harness the Power of Efficient Spot and Forward Trade to Foster Innovation, Investment, and Resiliency

Author

Listed:
  • Peter Cramton

    (University of Maryland & Max Planck Institute for Research on Collective Goods Bonn)

  • Axel Ockenfels

    (University of Cologne & Max Planck Institute for Research on Collective Goods Bonn)

Abstract

No abstract is available for this item.

Suggested Citation

  • Peter Cramton & Axel Ockenfels, 2024. "Germany's Electricity Market Reform Should Harness the Power of Efficient Spot and Forward Trade to Foster Innovation, Investment, and Resiliency," ECONtribute Policy Brief Series 062, University of Bonn and University of Cologne, Germany.
  • Handle: RePEc:ajk:ajkpbs:062
    as

    Download full text from publisher

    File URL: https://www.econtribute.de/RePEc/ajk/ajkpbs/ECONtribute_PB_062_2024.pdf
    File Function: First version, 2024
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Cramton, 2022. "Fostering Resiliency with Good Market Design: Lessons from Texas," ECONtribute Discussion Papers Series 145, University of Bonn and University of Cologne, Germany.
    2. Peter Cramton & Axel Ockenfels & Steven Stoft, 2013. "Capacity Market Fundamentals," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axel Ockenfels, 2022. "Optionen und Herausforderungen für ein neues Strommarktdesign in der Krise [Options and Challenges for a New Electricity Market Design in the Crisis]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(10), pages 766-769, October.
    2. Axel Ockenfels, 2022. "Marktdesign für die Gasmangellage [Market Design for a Gas Shortage]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(11), pages 855-857, November.
    3. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    4. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    5. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    6. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    7. Antweiler, Werner & Muesgens, Felix, 2024. "The new merit order: The viability of energy-only electricity markets with only intermittent renewable energy sources and grid-scale storage," Ruhr Economic Papers 1064, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Peter Cramton, 2022. "Fostering Resiliency with Good Market Design: Lessons from Texas," ECONtribute Discussion Papers Series 145, University of Bonn and University of Cologne, Germany.
    9. Growitsch, Christian & Just, Lisa & Pedell, Burkhard, 2014. "Risk Assessment of Investments in Energy-only and Capacity Markets," Die Unternehmung - Swiss Journal of Business Research and Practice, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 68(3), pages 181-188.
    10. Michele Fioretti & Jorge Tamayo, 2021. "Saving for a Dry Day: Coal, Dams, and the Energy Transition," Working Papers hal-03389152, HAL.
    11. Felbermayr Gabriel & Janeba Eckhard, 2024. "Improving Supply Security: Guidelines and Policy Proposals," Intereconomics: Review of European Economic Policy, Sciendo, vol. 59(3), pages 146-153.
    12. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
    13. Tangerås, Thomas P., 2018. "Equilibrium supply security in a multinational electricity market with renewable production," Energy Economics, Elsevier, vol. 72(C), pages 416-435.
    14. Stefan Ambec & Claude Crampes, 2019. "Decarbonizing Electricity Generation with Intermittent Sources of Energy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(6), pages 1105-1134.
    15. Aryani, Morteza & Ahmadian, Mohammad & Sheikh-El-Eslami, Mohammad-Kazem, 2020. "Designing a regulatory tool for coordinated investment in renewable and conventional generation capacities considering market equilibria," Applied Energy, Elsevier, vol. 279(C).
    16. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    17. Hagspiel, Simeon, 2017. "Reliable Electricity: The Effects of System Integration and Cooperative Measures to Make it Work," EWI Working Papers 2017-13, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. David P. Brown & Derek E. H. Olmstead, 2017. "Measuring market power and the efficiency of Alberta's restructured electricity market: An energy-only market design," Canadian Journal of Economics, Canadian Economics Association, vol. 50(3), pages 838-870, August.
    19. Simshauser, P., 2020. "Merchant utilities and boundaries of the firm: vertical integration in energy-only markets," Cambridge Working Papers in Economics 2039, Faculty of Economics, University of Cambridge.
    20. Peter, Jakob & Wagner, Johannes, 2018. "Optimal Allocation of Variable Renewable Energy Considering Contributions to Security of Supply," EWI Working Papers 2018-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ajk:ajkpbs:062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ECONtribute Office (email available below). General contact details of provider: https://www.econtribute.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.