IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2024026.html
   My bibliography  Save this paper

Approximations and inference for envelopment estimators of production frontiers

Author

Listed:
  • Daraio, Cinzia

    (Sapienza University of Rome)

  • Simar, Léopold

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

Nonparametric methods have been commonly used to assess the performance of both private and public organizations. Among them, the most popular ones are envelopment estimators such as Free Disposal Hull (FDH) or Data Envelopment Analysis (DEA), which estimate the attainable sets and their efficient boundaries by enveloping the cloud of observed units in the appropriate input-output space. However, these nonparametric envelopment techniques do not provide estimates of marginal products and other coefficients of economic interest. This paper presents a new approach that provides local estimates of all the desired partial derivatives and economic coefficients, which complement and complete the analysis based on nonparametric envelopment estimators. We improve nonparametric estimators by estimating nonparametrically smoothed efficient boundaries and providing derivatives and other coefficients without having to assume any parametric structure for the frontier and the inefficiency distribution. Our approach offers several advantages, such as a flexible nonparametric adjustment of the efficient frontier based on local linear models; a general multivariate efficiency model based on directional distances where one can choose the desired benchmark direction; the possibility of assessing the impact of external-environmental variables; a bootstrap-based statistical inference for deriving confidence intervals on the estimated coefficients for nonparametric and robust frontier approximations; the possibility of including factors aggregating inputs or outputs and recovering the estimated coefficients in the original units. To demonstrate the usefulness of the proposed approach, we provide an illustration in the field of education, where economic coefficients are important but the parametric assumptions have been questioned.

Suggested Citation

  • Daraio, Cinzia & Simar, Léopold, 2024. "Approximations and inference for envelopment estimators of production frontiers," LIDAM Reprints ISBA 2024026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2024026
    DOI: https://doi.org/10.1007/s11123-024-00726-2
    Note: In: Journal of Productivity Analysis, 2024, vol. 62(2), p. 197-215
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Shawna Grosskopf & Kathy Hayes & Lori L. Taylor, 2014. "Applied efficiency analysis in education," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 19-26.
    2. Léopold Simar & Ingrid Keilegom & Valentin Zelenyuk, 2017. "Nonparametric least squares methods for stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 47(3), pages 189-204, June.
    3. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    4. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2012. "Regularization of nonparametric frontier estimators," Journal of Econometrics, Elsevier, vol. 168(2), pages 285-299.
    5. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2018. "Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non-parametric, two-stage models of production," LIDAM Reprints ISBA 2018023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. James H. Stock, 2010. "The Other Transformation in Econometric Practice: Robust Tools for Inference," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 83-94, Spring.
    7. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2018. "Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non‐parametric, two‐stage models of production," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 170-191, June.
    8. Simar, Léopold & Vanhems, Anne & Wilson, Paul W., 2012. "Statistical inference for DEA estimators of directional distances," European Journal of Operational Research, Elsevier, vol. 220(3), pages 853-864.
    9. Seok-Oh Jeong & Byeong Park & Léopold Simar, 2010. "Nonparametric conditional efficiency measures: asymptotic properties," Annals of Operations Research, Springer, vol. 173(1), pages 105-122, January.
    10. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    11. Wilson, Paul W., 2018. "Dimension reduction in nonparametric models of production," European Journal of Operational Research, Elsevier, vol. 267(1), pages 349-367.
    12. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2015. "When Bias Kills The Variance: Central Limit Theorems For Dea And Fdh Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 31(2), pages 394-422, April.
    13. Kristof De Witte & Laura López-Torres, 2017. "Efficiency in education: a review of literature and a way forward," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(4), pages 339-363, April.
    14. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    15. Simar, Léopold & Wilson, Paul W., 2013. "Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives," Foundations and Trends(R) in Econometrics, now publishers, vol. 5(3–4), pages 183-337, June.
    16. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    17. Jeong, Seok-Oh & Simar, Léopold, 2006. "Linearly interpolated FDH efficiency score for nonconvex frontiers," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2141-2161, November.
    18. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    19. Léopold Simar & Paul W. Wilson, 2020. "Hypothesis testing in nonparametric models of production using multiple sample splits," Journal of Productivity Analysis, Springer, vol. 53(3), pages 287-303, June.
    20. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2018. "Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non‐parametric, two‐stage models of production," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 170-191, June.
    21. Eric A. Hanushek, 1979. "Conceptual and Empirical Issues in the Estimation of Educational Production Functions," Journal of Human Resources, University of Wisconsin Press, vol. 14(3), pages 351-388.
    22. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    23. Johnes, Jill, 2006. "Data envelopment analysis and its application to the measurement of efficiency in higher education," Economics of Education Review, Elsevier, vol. 25(3), pages 273-288, June.
    24. Podinovski, Victor V., 2019. "Direct estimation of marginal characteristics of nonparametric production frontiers in the presence of undesirable outputs," European Journal of Operational Research, Elsevier, vol. 279(1), pages 258-276.
    25. Figlio, David N., 1999. "Functional form and the estimated effects of school resources," Economics of Education Review, Elsevier, vol. 18(2), pages 241-252, April.
    26. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daraio, Cinzia & Simar, Léopold, 2022. "Approximations and Inference for Nonparametric Production Frontiers," LIDAM Discussion Papers ISBA 2022017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    3. Daraio, Cinzia & Simar, Léopold & Wilson, Paul W., 2021. "Quality as a latent heterogeneity factor in the efficiency of universities," Economic Modelling, Elsevier, vol. 99(C).
    4. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    5. Frédérique Fève & Jean-Pierre Florens & Léopold Simar, 2023. "Proportional incremental cost probability functions and their frontiers," Empirical Economics, Springer, vol. 64(6), pages 2721-2756, June.
    6. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2019. "A bootstrap approach for bandwidth selection in estimating conditional efficiency measures," European Journal of Operational Research, Elsevier, vol. 277(2), pages 784-797.
    7. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    8. Michael L. Polemis & Thanasis Stengos & Nickolaos G. Tzeremes, 2020. "Modeling the effect of competition on US manufacturing sectors’ efficiency: an order-m frontier analysis," Journal of Productivity Analysis, Springer, vol. 54(1), pages 27-41, August.
    9. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    10. Guangshun Qiao & Zhan-ao Wang, 2021. "Vertical integration vs. specialization: a nonparametric conditional efficiency estimate for the global semiconductor industry," Journal of Productivity Analysis, Springer, vol. 56(2), pages 139-150, December.
    11. Caitlin T. O’Loughlin & Paul W. Wilson, 2021. "Benchmarking the performance of US Municipalities," Empirical Economics, Springer, vol. 60(6), pages 2665-2700, June.
    12. Caitlin O’Loughlin & Léopold Simar & Paul W. Wilson, 2023. "Methodologies for assessing government efficiency," Chapters, in: António Afonso & João Tovar Jalles & Ana Venâncio (ed.), Handbook on Public Sector Efficiency, chapter 4, pages 72-101, Edward Elgar Publishing.
    13. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2019. "Quality and its impact on efficiency," LIDAM Discussion Papers ISBA 2019004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Jose M. Cordero & Cristina Polo & Daniel Santín, 2020. "Assessment of new methods for incorporating contextual variables into efficiency measures: a Monte Carlo simulation," Operational Research, Springer, vol. 20(4), pages 2245-2265, December.
    15. Mastromarco, Camilla & Simar, Léopold & Van Keilegom, Ingrid, 2022. "Estimating Nonparametric Conditional Frontiers and Efficiencies: A New Approach," LIDAM Discussion Papers ISBA 2022035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Léopold Simar & Paul W. Wilson, 2020. "Hypothesis testing in nonparametric models of production using multiple sample splits," Journal of Productivity Analysis, Springer, vol. 53(3), pages 287-303, June.
    17. López-Torres, Laura & Johnes, Jill & Elliott, Caroline & Polo, Cristina, 2021. "The effects of competition and collaboration on efficiency in the UK independent school sector," Economic Modelling, Elsevier, vol. 96(C), pages 40-53.
    18. Daraio, Cinzia & Simar, Léopold, 2014. "Directional distances and their robust versions: Computational and testing issues," European Journal of Operational Research, Elsevier, vol. 237(1), pages 358-369.
    19. Sergio Destefanis & Francesco Addesa & Giambattista Rossi, 2022. "The impact of COVID-19 on home advantage: a conditional order-m analysis of football clubs’ efficiency in the top-5 European leagues," Applied Economics, Taylor & Francis Journals, vol. 54(58), pages 6639-6655, December.
    20. Pierluigi Toma, 2020. "Size and productivity: a conditional approach for Italian pharmaceutical sector," Journal of Productivity Analysis, Springer, vol. 54(1), pages 1-12, August.

    More about this item

    Keywords

    Data envelopment analysis ; Partial frontiers ; Directional distances ; Linear approximations ; Local linear approximations;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2024026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.