IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2022030.html
   My bibliography  Save this paper

Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models

Author

Listed:
  • Lambert, Philippe

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Gressani, Oswaldo

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

Laplacian-P-splines (LPS) associate the P-splines smoother and the Laplace approximation in a unifying framework for fast and flexible inference under the Bayesian paradigm. Gaussian Markov field priors imposed on penalized latent variables and the Bernstein-von Mises theorem typically ensure a razor-sharp accuracy of the Laplace approximation to the posterior distribution of these variables. This accuracy can be seriously compromised for some unpenalized parameters, especially when the information synthesized by the prior and the likelihood is sparse. We propose a refined version of the LPS methodology by splitting the latent space in two subsets. The first set involves latent variables for which the joint posterior distribution is approached from a non-Gaussian perspective with an approximation scheme that is particularly well tailored to capture asymmetric patterns, while the posterior distribution for parameters in the complementary latent set undergoes a traditional treatment with Laplace approximations. As such, the dichotomization of the latent space provides the necessary structure for a separate treatment of model parameters, yielding improved estimation accuracy as compared to a setting where posterior quantities are uniformly handled with Laplace. In addition, the proposed enriched version of LPS remains entirely sampling-free, so that it operates at a computing speed that is far from reach to any existing Markov chain Monte Carlo approach. The methodology is illustrated on the additive proportional odds model with an application on ordinal survey data.

Suggested Citation

  • Lambert, Philippe & Gressani, Oswaldo, 2022. "Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models," LIDAM Discussion Papers ISBA 2022030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2022030
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A265609/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lambert, Philippe & Bremhorst, Vincent, 2019. "Estimation and identification issues in the promotion time cure model when the same covariates influence long- and short-term survival," LIDAM Reprints ISBA 2019027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Lambert, Philippe & Eilers, Paul H.C., 2009. "Bayesian density estimation from grouped continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1388-1399, February.
    3. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    4. Gressani, Oswaldo & Lambert, Philippe, 2018. "Fast Bayesian inference using Laplace approximations in a flexible promotion time cure model based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 151-167.
    5. Simon N. Wood & Matteo Fasiolo, 2017. "A generalized Fellner‐Schall method for smoothing parameter optimization with application to Tweedie location, scale and shape models," Biometrics, The International Biometric Society, vol. 73(4), pages 1071-1081, December.
    6. Lambert, Philippe, 2021. "Fast Bayesian inference using Laplace approximations in nonparametric double additive location-scale models with right- and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    7. Lambert, Philippe, 2021. "Fast Bayesian inference using Laplace approximations in nonparametric double additive location-scale models with right- and interval-censored data," LIDAM Reprints ISBA 2021057, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
    9. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    10. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    11. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    12. Gressani, Oswaldo & Lambert, Philippe, 2018. "Fast Bayesian inference using Laplace approximations in a flexible promotion time cure model based on P-splines," LIDAM Reprints ISBA 2018013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," LIDAM Reprints ISBA 2021056, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lambert, Philippe, 2021. "Fast Bayesian inference using Laplace approximations in nonparametric double additive location-scale models with right- and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    2. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    3. Lambert, Philippe & Kreyenfeld, Michaela, 2023. "Exogenous time-varying covariates in double additive cure survival model with application to fertility," LIDAM Discussion Papers ISBA 2023006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    5. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    6. Philippe Lambert, 2023. "Comments on: Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 506-509, June.
    7. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    8. Stefan Lang & Nikolaus Umlauf & Peter Wechselberger & Kenneth Harttgen & Thomas Kneib, 2012. "Multilevel structured additive regression," Working Papers 2012-07, Faculty of Economics and Statistics, Universität Innsbruck.
    9. Jaeger, Jonathan & Lambert, Philippe, 2012. "Bayesian penalized smoothing approaches in models specified using affine differential equations with unknown error distributions," LIDAM Discussion Papers ISBA 2012017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    11. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    12. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    13. Xin Fang & Bo Fang & Chunfang Wang & Tian Xia & Matteo Bottai & Fang Fang & Yang Cao, 2019. "Comparison of Frequentist and Bayesian Generalized Additive Models for Assessing the Association between Daily Exposure to Fine Particles and Respiratory Mortality: A Simulation Study," IJERPH, MDPI, vol. 16(5), pages 1-20, March.
    14. Romero, Eva, 2024. "Fitting complex stochastic volatility models using Laplace approximation," DES - Working Papers. Statistics and Econometrics. WS 43947, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Gressani, Oswaldo & Lambert, Philippe, 2016. "Fast Bayesian inference in semi-parametric P-spline cure survival models using Laplace approximations," LIDAM Discussion Papers ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Lambert, Philippe & Eilers, Paul H.C., 2009. "Bayesian density estimation from grouped continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1388-1399, February.
    17. Hazelton, Martin L. & Turlach, Berwin A., 2011. "Semiparametric regression with shape-constrained penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2871-2879, October.
    18. Lambert, Philippe, 2007. "Archimedean copula estimation using Bayesian splines smoothing techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6307-6320, August.
    19. Roca-Pardinas, Javier & Cadarso-Suarez, Carmen & Tahoces, Pablo G. & Lado, Maria J., 2008. "Assessing continuous bivariate effects among different groups through nonparametric regression models: An application to breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1958-1970, January.
    20. Lambert, Philippe, 2011. "Smooth semiparametric and nonparametric Bayesian estimation of bivariate densities from bivariate histogram data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 429-445, January.

    More about this item

    Keywords

    Additive model ; P-splines ; Laplace approximation ; Skewness;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2022030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.