IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2018013.html
   My bibliography  Save this paper

Fast Bayesian inference using Laplace approximations in a flexible promotion time cure model based on P-splines

Author

Listed:
  • Gressani, Oswaldo
  • Lambert, Philippe

Abstract

No abstract is available for this item.

Suggested Citation

  • Gressani, Oswaldo & Lambert, Philippe, 2018. "Fast Bayesian inference using Laplace approximations in a flexible promotion time cure model based on P-splines," LIDAM Reprints ISBA 2018013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2018013
    Note: In : Computational Statistics & Data Analysis, vol. 124, no.August 2018, p. 151-167 (2018)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lambert, Philippe, 2021. "Fast Bayesian inference using Laplace approximations in nonparametric double additive location-scale models with right- and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    2. Romero, Eva, 2024. "Fitting complex stochastic volatility models using Laplace approximation," DES - Working Papers. Statistics and Econometrics. WS 43947, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Philippe Lambert, 2023. "Comments on: Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 506-509, June.
    4. Lambert, Philippe & Gressani, Oswaldo, 2022. "Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models," LIDAM Discussion Papers ISBA 2022030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2018013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.