IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2022003.html
   My bibliography  Save this paper

Long memory self-exciting jump diffusion for asset prices modeling

Author

Listed:
  • Njike Leunga, Charles G.

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Hainaut, Donatien

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

We propose a model for asset prices driven by a self-exciting jump diffusion process. The novel feature of our model is the shocks ruled by a Hawkes process with a Mittag-Leffler memory kernel. The Mittag-Leffler kernel is a relaxation function used in fractional calculus to describe complex memory effect. In particular, it generalizes the exponential memory that ensures Hawkes process has the Markov property. Despite its interesting characteristics, the Hawkes process with the Mittag-Leffler kernel is a non-markov process. Nevertheless, we derive a closed form expression for the moment generating function of log-returns. It is obtained by representing the Hawkes process with Mittag-Leffler kernel as an infinite dimensional Markov process. Furthermore, we provide a change of measure and price European options by exploiting the fast Fourier transform technique. Applied to the times series of S&P 500 daily values, we illustrate the efficiency of the proposed model to produce excess of kurtosis, skewness compared to model with memoryless. We show that the prices of call option on S&P 500 are sensitive to the memory parameter of our model.

Suggested Citation

  • Njike Leunga, Charles G. & Hainaut, Donatien, 2022. "Long memory self-exciting jump diffusion for asset prices modeling," LIDAM Discussion Papers ISBA 2022003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2022003
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A257579/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Njike Leunga, Charles Guy & Hainaut, Donatien, 2020. "Interbank credit risk modeling with self-exciting jump processes," LIDAM Reprints ISBA 2020027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Peter Carr & Liuren Wu, 2003. "What Type of Process Underlies Options? A Simple Robust Test," Journal of Finance, American Finance Association, vol. 58(6), pages 2581-2610, December.
    3. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    4. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    5. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    6. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    7. Emmanuel Bacry & Thibault Jaisson & Jean--François Muzy, 2016. "Estimation of slowly decreasing Hawkes kernels: application to high-frequency order book dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1179-1201, August.
    8. repec:bla:jfinan:v:59:y:2004:i:2:p:755-793 is not listed on IDEAS
    9. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    10. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    11. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    12. Hainaut, D. & Moraux, F., 2017. "Hedging of options in presence of jump clustering," LIDAM Discussion Papers ISBA 2017012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    15. Charles Guy Njike Leunga & Donatien Hainaut, 2020. "Interbank Credit Risk Modeling With Self-Exciting Jump Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-32, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles Guy Njike Leunga & Donatien Hainaut, 2024. "Affine Heston model style with self-exciting jumps and long memory," Annals of Finance, Springer, vol. 20(1), pages 1-43, March.
    2. Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Carverhill, Andrew & Luo, Dan, 2023. "A Bayesian analysis of time-varying jump risk in S&P 500 returns and options," Journal of Financial Markets, Elsevier, vol. 64(C).
    4. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    5. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    6. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    7. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    8. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    9. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    10. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    11. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    12. Bondarenko, Oleg, 2014. "Variance trading and market price of variance risk," Journal of Econometrics, Elsevier, vol. 180(1), pages 81-97.
    13. Jing-zhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time-Changed Levy Processes," Econometric Society 2004 North American Winter Meetings 405, Econometric Society.
    14. Riccardo Brignone & Carlo Sgarra, 2020. "Asian options pricing in Hawkes-type jump-diffusion models," Annals of Finance, Springer, vol. 16(1), pages 101-119, March.
    15. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    16. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    17. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    18. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    19. Peter Carr & Liuren Wu, 2004. "Variance Risk Premia," Finance 0409015, University Library of Munich, Germany.
    20. Lei Fan & Justin Sirignano, 2024. "Machine Learning Methods for Pricing Financial Derivatives," Papers 2406.00459, arXiv.org.

    More about this item

    Keywords

    Hawkes process ; Mittag-Leffler kernel ; Option pricing;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2022003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.