IDEAS home Printed from https://ideas.repec.org/p/ahh/wpaper/worms1612.html
   My bibliography  Save this paper

Experimental examination of facilities layout problems in logistics systems including objects with diverse sizes and shapes

Author

Listed:
  • Jerzy Grobelny
  • Rafal Michalski

Abstract

This study demonstrates a simulation experiment results regarding a flexible approach to solving facilities layout problem on a regular grid. In this paper approach we model objects with different dimensions and various shapes. We have implemented our version of the simulated annealing algorithm (Kirkpatrick et al., 1983) and analyzed how the number of cycles (100, 200, 300), objects types (uniform, diverse) affect average goal function values, mean concentration degrees, and the number of disintegrated objects. The formal statistical analysis was conducted separately for two sizes of regular grids, i.e. 6x6 and 10x10. The outcomes generally showed a significant influence of the studied effects on the analyzed dependent variables.

Suggested Citation

  • Jerzy Grobelny & Rafal Michalski, 2016. "Experimental examination of facilities layout problems in logistics systems including objects with diverse sizes and shapes," WORking papers in Management Science (WORMS) WORMS/16/12, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
  • Handle: RePEc:ahh:wpaper:worms1612
    DOI: 10.1007/978-3-319-28555-9_14
    as

    Download full text from publisher

    File URL: https://worms.pwr.edu.pl/RePEc/ahh/wpaper/WORMS_16_12.pdf
    File Function: Final version, 2016
    Download Restriction: no

    File URL: https://libkey.io/10.1007/978-3-319-28555-9_14?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kusiak, Andrew & Heragu, Sunderesh S., 1987. "The facility layout problem," European Journal of Operational Research, Elsevier, vol. 29(3), pages 229-251, June.
    2. Gordon C. Armour & Elwood S. Buffa, 1963. "A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities," Management Science, INFORMS, vol. 9(2), pages 294-309, January.
    3. Kim, J. -Y. & Kim, Y. -D., 1995. "Graph theoretic heuristics for unequal-sized facility layout problems," Omega, Elsevier, vol. 23(4), pages 391-401, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerzy Grobelny & Rafal Michalski, 2016. "A concept of a flexible approach to the facilities layout problems in logistics systems," WORking papers in Management Science (WORMS) WORMS/16/11, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    2. Lin, Jin-Ling & Foote, Bobbie & Pulat, Simin & Chang, Chir-Ho & Cheung, John Y., 1996. "Solving the failure-to-fit problem for plant layout: By changing department shapes and sizes," European Journal of Operational Research, Elsevier, vol. 89(1), pages 135-146, February.
    3. Lee, Geun-Cheol & Kim, Yeong-Dae, 2000. "Algorithms for adjusting shapes of departments in block layouts on the grid-based plane," Omega, Elsevier, vol. 28(1), pages 111-122, February.
    4. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    5. Kazuhiro Tsuchiya & Sunil Bharitkar & Yoshiyasu Takefuji, 1996. "A neural network approach to facility layout problems," European Journal of Operational Research, Elsevier, vol. 89(3), pages 556-563, March.
    6. Gomez, A. & Fernandez, Q. I. & De la Fuente Garcia, D. & Garcia, P. J., 2003. "Using genetic algorithms to resolve layout problems in facilities where there are aisles," International Journal of Production Economics, Elsevier, vol. 84(3), pages 271-282, June.
    7. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    8. Stefan Helber & Daniel Böhme & Farid Oucherif & Svenja Lagershausen & Steffen Kasper, 2016. "A hierarchical facility layout planning approach for large and complex hospitals," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 5-29, June.
    9. Ignacio Castillo & Thaddeus Sim, 2004. "A spring-embedding approach for the facility layout problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 73-81, January.
    10. Ravi Kumar, K. & Hadjinicola, George C. & Lin, Ting-li, 1995. "A heuristic procedure for the single-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 65-73, November.
    11. Chiang, Wen-Chyuan & Chiang, Chi, 1998. "Intelligent local search strategies for solving facility layout problems with the quadratic assignment problem formulation," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 457-488, April.
    12. Ramesh Marasini & Nashwan Dawood & Brian Hobbs, 2001. "Stockyard layout planning in precast concrete products industry: a case study and proposed framework," Construction Management and Economics, Taylor & Francis Journals, vol. 19(4), pages 365-377.
    13. Minhee Kim & Junjae Chae, 2019. "Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path," Mathematics, MDPI, vol. 7(2), pages 1-21, February.
    14. Balakrishnan, Jaydeep & Cheng, Chun Hung, 1998. "Dynamic layout algorithms: a state-of-the-art survey," Omega, Elsevier, vol. 26(4), pages 507-521, August.
    15. Ali Derakhshan Asl & Kuan Yew Wong & Manoj Kumar Tiwari, 2016. "Unequal-area stochastic facility layout problems: solutions using improved covariance matrix adaptation evolution strategy, particle swarm optimisation, and genetic algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 799-823, February.
    16. Ioannou, George, 2006. "Time-phased creation of hybrid manufacturing systems," International Journal of Production Economics, Elsevier, vol. 102(2), pages 183-198, August.
    17. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    18. Mariem Besbes & Marc Zolghadri & Roberta Costa Affonso & Faouzi Masmoudi & Mohamed Haddar, 2020. "A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 615-640, March.
    19. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    20. Balakrishnan, Jaydeep & Cheng, Chun Hung & Conway, Daniel G. & Lau, Chun Ming, 2003. "A hybrid genetic algorithm for the dynamic plant layout problem," International Journal of Production Economics, Elsevier, vol. 86(2), pages 107-120, November.

    More about this item

    Keywords

    Logistics; Facilities layout problem; Simulated annealing; Flexible approach; Simulation experiment;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L16 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Industrial Organization and Macroeconomics; Macroeconomic Industrial Structure
    • L23 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Organization of Production
    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ahh:wpaper:worms1612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Kowalska-Pyzalska (email available below). General contact details of provider: https://edirc.repec.org/data/kbpwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.