IDEAS home Printed from https://ideas.repec.org/p/ags/uqsers/151178.html
   My bibliography  Save this paper

Estimating complex production functions: The importance of starting values

Author

Listed:
  • Neal, Mark

Abstract

Production functions that take into account uncertainty can be empirically estimated by taking a state contingent view of the world. Where there is no a priori information to allocate data amongst a small number of states, the estimation may be carried out with finite mixtures model. The complexity of the estimation almost guarantees a large number of local maxima for the likelihood function. However, it is shown, with examples, that a variation on the traditional method of finding starting values substantially improves the estimation results. One of the major benefits of the proposed method is the reliable estimation of a decision maker's ability to substitute output between states, justifying a preference for the state contingent approach over the use of a stochastic production function.

Suggested Citation

  • Neal, Mark, 2007. "Estimating complex production functions: The importance of starting values," Risk and Sustainable Management Group Working Papers 151178, University of Queensland, School of Economics.
  • Handle: RePEc:ags:uqsers:151178
    DOI: 10.22004/ag.econ.151178
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/151178/files/WPR07_1.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.151178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. J. O'Donnell & W. E. Griffiths, 2006. "Estimating State-Contingent Production Frontiers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 249-266.
    2. Chavas, Jean-Paul, 2006. "A Cost Approach to Economic Analysis under Production Uncertainty," 2006 Annual meeting, July 23-26, Long Beach, CA 21081, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
    4. St. Pierre, Eileen F., 1998. "Estimating EGARCH-M models: Science or art?," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(2), pages 167-180.
    5. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    6. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    7. White, Halbert, 1980. "Using Least Squares to Approximate Unknown Regression Functions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 149-170, February.
    8. repec:tcd:wpaper:tep4 is not listed on IDEAS
    9. Tonsor, Glynn T. & Kastens, Terry L., 2006. "How Much Do Starting Values Really Matter? An Empirical Comparison of Genetic Algorithm and Traditional Approaches," 2006 Annual meeting, July 23-26, Long Beach, CA 21252, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    2. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
    3. Cliff Huang & Tsu-Tan Fu, 1999. "An Average Derivative Estimation of Stochastic Frontiers," Journal of Productivity Analysis, Springer, vol. 12(1), pages 45-53, August.
    4. repec:onb:oenbwp:y::i:96:b:1 is not listed on IDEAS
    5. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    6. Tom Kompas & Tuong Nhu Che & R. Quentin Grafton, 2004. "Technical efficiency effects of input controls: evidence from Australia's banana prawn fishery," Applied Economics, Taylor & Francis Journals, vol. 36(15), pages 1631-1641.
    7. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    8. Andriakopoulos, Konstantinos & Ladas, Augoustinos & Andriakopoulos, Panagiotis, 2020. "Bank efficiency and leasing in U.S.A. banking system," MPRA Paper 112645, University Library of Munich, Germany.
    9. Jan Kluge & Sarah Lappöhn & Kerstin Plank, 2023. "Predictors of TFP growth in European countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(1), pages 109-140, February.
    10. Giovanni Calice & Levent Kutlu & Ming Zeng, 2021. "Understanding US firm efficiency and its asset pricing implications," Empirical Economics, Springer, vol. 60(2), pages 803-827, February.
    11. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    12. Khanal, Aditya & Koirala, Krishna & Regmi, Madhav, 2016. "Do Financial Constraints Affect Production Efficiency in Drought Prone Areas? A Case from Indonesian Rice Growers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230087, Southern Agricultural Economics Association.
    13. Wu, Yanrui, 1995. "The productive efficiency of Chinese iron and steel firms A stochastic frontier analysis," Resources Policy, Elsevier, vol. 21(3), pages 215-222, September.
    14. Firna Varina & Sri Hartoyo & Nunung Kusnadi & Amzul Rifin, 2020. "The Determinants of Technical Efficiency of Oil Palm Smallholders in Indonesia," International Journal of Economics and Financial Issues, Econjournals, vol. 10(6), pages 89-93.
    15. Rossi, Martín, 2000. "Análisis de eficiencia aplicado a la regulación ¿Es importante la Distribución Elegida para el Término de Ineficiencia?," UADE Textos de Discusión 22_2000, Instituto de Economía, Universidad Argentina de la Empresa.
    16. Dhehibi, Boubaker & Lachaal, Lassaad & Elloumi, Mohamed & Messaoud, Emna B., 2007. "Measurement and Sources of Technical Inefficiency in the Tunisian Citrus Growing Sector," 103rd Seminar, April 23-25, 2007, Barcelona, Spain 9391, European Association of Agricultural Economists.
    17. Renuka Mahadevan, 2002. "Trade liberalization and productivity growth in Australian manufacturing industries," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 30(2), pages 170-185, June.
    18. Noel Uri, 2003. "The Effect of Incentive Regulation in Telecommunications in the United States," Quality & Quantity: International Journal of Methodology, Springer, vol. 37(2), pages 169-191, May.
    19. Tauer, Loren W. & Mishra, Ashok K., 2005. "U.S. Dairy Farm Cost Efficiency," Working Papers 127079, Cornell University, Department of Applied Economics and Management.
    20. Anthony Rezitis & Kostas Tsiboukas & Stauros Tsoukalas, 2002. "Measuring technical efficiency in the Greek agricultural sector," Applied Economics, Taylor & Francis Journals, vol. 34(11), pages 1345-1357.
    21. Rosen Azad Chowdhury & Dilshad Jahan & Tapas Mishra & Mamata Parhi, 2023. "A Quality Dimension? A Re-appraisal of Financial Development and Economic Growth Nexus in a Quality-Quantity Setting," Working Papers 2023-02, Swansea University, School of Management.

    More about this item

    Keywords

    Production Economics; Risk and Uncertainty;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uqsers:151178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/decuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.