IDEAS home Printed from https://ideas.repec.org/p/ags/uhohdp/92827.html
   My bibliography  Save this paper

Payments for environmental services : incentives through carbon sequestration compensation for cocoa-based agroforestry systems in Central Sulawesi, Indonesia

Author

Listed:
  • Seeberg-Elverfeldt, Christina
  • Schwarze, Stefan
  • Zeller, Manfred

Abstract

Up to 25 percent of all anthropogenic greenhouse gas emissions are caused by deforestation, and Indonesia is the third largest greenhouse gas emitter worldwide due to land use change and deforestation. On the island of Sulawesi in the vicinity of the Lore Lindu National Park (LLNP), many smallholders contribute to conversion processes at the forest margin as a result of their agricultural practices. Specifically the area dedicated to cocoa plantations has increased from zero (1979) to nearly 18,000 hectares (2001). Some of these plots have been established inside the 220,000 hectares of the LLNP. An intensification process is observed with a consequent reduction of the shade tree density. This study assesses which impact carbon sequestration payments for forest management systems have on the prevailing land use systems. Additionally, the level of incentives is determined which motivates farmers to desist from further deforestation and land use intensification activities. Household behaviour and resource allocation is analysed with a comparative static linear programming model. As these models prove to be a reliable tool for policy analysis, the output can indicate the adjustments in resource allocation and land use shifts when introducing compensation payments. The data was collected in a household survey in six villages around the LLNP. Four household categories are identified according to their dominant agroforestry systems. These range from low intensity management with a high degree of shading to highly intensified shade free systems. At the plot level, the payments from carbon sequestration are the highest for the full shade cocoa agroforestry system, but with low carbon prices of € 5 tCO2e-1 these constitute 5 percent of the cocoa gross margin. Focusing on the household level, however, an increase of up to 18 percent of the total gross margin can be realised. Furthermore, for differentiated carbon prices up to € 32 tCO2e-1 the majority of the households have an incentive to adopt the more sustainable shade intensive agroforestry system. A win-win situation seems to appear, whereby, when targeting only the shade intensive agroforestry systems with carbon payments, the poorest households economically benefit the most and land use systems with high environmental benefits are promoted.

Suggested Citation

  • Seeberg-Elverfeldt, Christina & Schwarze, Stefan & Zeller, Manfred, 2008. "Payments for environmental services : incentives through carbon sequestration compensation for cocoa-based agroforestry systems in Central Sulawesi, Indonesia," Research in Development Economics and Policy (Discussion Paper Series) 92827, Universitaet Hohenheim, Department of Agricultural Economics and Social Sciences in the Tropics and Subtropics.
  • Handle: RePEc:ags:uhohdp:92827
    DOI: 10.22004/ag.econ.92827
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/92827/files/dp022008_seeberg_01.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.92827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Intergovernmental Panel on Climate Change IPCC, 2008. "Intergovernmental Panel on Climate Change: Fourth Assessment Report: Climate Change 2007: Synthesis Report," Working Papers id:1325, eSocialSciences.
    2. Barbier, B. & Bergeron, G., 1999. "Impact of policy interventions on land management in Honduras: results of a bioeconomic model," Agricultural Systems, Elsevier, vol. 60(1), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarsky, Lyuba, 2010. "Climate-Resilient Industrial Development Paths: Design Principles and Alternative Models," Working Papers 179080, Tufts University, Global Development and Environment Institute.
    2. Chhabra, Vibhuti & Bambery, Keith & Bhattacharya, Sankar & Shastri, Yogendra, 2020. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components," Renewable Energy, Elsevier, vol. 148(C), pages 388-401.
    3. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    4. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    5. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    6. Parisa Aghajanzadeh-Darzi & Pierre-Alain Jayet & Athanasios Petsakos, 2017. "Improvement of a Bio-Economic Mathematical Programming Model in the Case of On-Farm Source Inputs and Outputs," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 489-508, September.
    7. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    8. Fleskens, Luuk & Graaff, Jan de, 2010. "Conserving natural resources in olive orchards on sloping land: Alternative goal programming approaches towards effective design of cross-compliance and agri-environmental measures," Agricultural Systems, Elsevier, vol. 103(8), pages 521-534, October.
    9. Moonju Kim & Befekadu Chemere & Kyungil Sung, 2019. "Effect of Heavy Rainfall Events on the Dry Matter Yield Trend of Whole Crop Maize ( Zea mays L.)," Agriculture, MDPI, vol. 9(4), pages 1-11, April.
    10. Tatàno, Fabio & Acerbi, Nadia & Monterubbiano, Chiara & Pretelli, Silvia & Tombari, Lucia & Mangani, Filippo, 2012. "Shoe manufacturing wastes: Characterisation of properties and recovery options," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 66-75.
    11. Weerahewa, Jeevika & Dayananda, Dasuni, 2023. "Land use changes and economic effects of alternative fertilizer policies: A simulation analysis with a bio-economic model for a Tank Village of Sri Lanka," Agricultural Systems, Elsevier, vol. 205(C).
    12. Aune, Finn Roar & Grimsrud, Kristine & Lindholt, Lars & Rosendahl, Knut Einar & Storrøsten, Halvor Briseid, 2017. "Oil consumption subsidy removal in OPEC and other Non-OECD countries: Oil market impacts and welfare effects," Energy Economics, Elsevier, vol. 68(C), pages 395-409.
    13. Flichman, Guillermo & Jacquet, Florence, 2003. "Le couplage des modèles agronomiques et économiques : intérêt pour l'analyse des politiques," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 67.
    14. Laborte, Alice G. & Van Ittersum, Martin K. & Van den Berg, Marrit M., 2007. "Multi-scale analysis of agricultural development: A modelling approach for Ilocos Norte, Philippines," Agricultural Systems, Elsevier, vol. 94(3), pages 862-873, June.
    15. Andrew, Jane & Kaidonis, Mary A. & Andrew, Brian, 2010. "Carbon tax: Challenging neoliberal solutions to climate change," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 21(7), pages 611-618.
    16. He, Xiaoping, 2015. "Regional differences in China's CO2 abatement cost," Energy Policy, Elsevier, vol. 80(C), pages 145-152.
    17. Syud Amer Ahmed & Noah S. Diffenbaugh & Thomas W. Hertel & William J. Martin, 2012. "Agriculture and Trade Opportunities for Tanzania: Past Volatility and Future Climate Change," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 429-447, August.
    18. Julie Rozenberg & Céline Guivarch & Robert Lempert & Stéphane Hallegatte, 2014. "Building SSPs for climate policy analysis: a scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation," Climatic Change, Springer, vol. 122(3), pages 509-522, February.
    19. Mark Colas & John M. Morehouse, 2019. "The Environmental Cost of Land Use Restrictions," Opportunity and Inclusive Growth Institute Working Papers 20, Federal Reserve Bank of Minneapolis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uhohdp:92827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iahohde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.