IDEAS home Printed from https://ideas.repec.org/p/ags/ucdavw/181288.html
   My bibliography  Save this paper

A Dual Least-Squares Estimator of the Errors-In-Variables Model Using Only First And Second Moments

Author

Listed:
  • Paris, Quirino

Abstract

The paper presents an estimator of the errors-in-variables in multiple regressions using only first and second-order moments. The consistency property of the estimator is explored by Monte Carlo experiments. Based on these results, we conjecture that the estimator is consistent. The proof of consistency, to be dealt in another paper, is based upon the assumptions of Kiefer and Wolfowitz (1956). The novel treatment of the errors-in-variables model relies crucially upon a neutral parameterization of the error terms of the dependent and the explanatory variables. The estimator does not have a closed form solution. It requires the maximization of a dual least-squares objective function that guarantees a global optimum. This estimator, therefore, includes the naïve least-squares method (when only the dependent variable is measured with error) as a special case.

Suggested Citation

  • Paris, Quirino, 2014. "A Dual Least-Squares Estimator of the Errors-In-Variables Model Using Only First And Second Moments," Working Papers 181288, University of California, Davis, Department of Agricultural and Resource Economics.
  • Handle: RePEc:ags:ucdavw:181288
    DOI: 10.22004/ag.econ.181288
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/181288/files/14-003.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.181288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Delaigle, Aurore & Meister, Alexander, 2007. "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1416-1426, December.
    2. Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "Higher moment estimators for linear regression models with errors in the variables," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 193-221.
    3. Paris,Quirino, 2011. "Economic Foundations of Symmetric Programming," Cambridge Books, Cambridge University Press, number 9780521123020, October.
    4. K. van Montfort & A. Mooijaart & J. de Leeuw, 1987. "Regression with errors in variables: estimators based on third order moments," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 41(4), pages 223-238, December.
    5. Pal, Manoranjan, 1980. "Consistent moment estimators of regression coefficients in the presence of errors in variables," Journal of Econometrics, Elsevier, vol. 14(3), pages 349-364, December.
    6. Paris,Quirino, 2011. "Economic Foundations of Symmetric Programming," Cambridge Books, Cambridge University Press, number 9780521194723, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erickson, Timothy & Jiang, Colin Huan & Whited, Toni M., 2014. "Minimum distance estimation of the errors-in-variables model using linear cumulant equations," Journal of Econometrics, Elsevier, vol. 183(2), pages 211-221.
    2. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    3. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Paloma, Sergio, 2015. "The Impact of Crop Diversification Measure: EU-wide Evidence Based on IFM-CAP Model," 2015 Conference, August 9-14, 2015, Milan, Italy 211542, International Association of Agricultural Economists.
    4. Kooten, G. Cornelis van, 2013. "Modeling Forest Trade in Logs and Lumber: Qualitative and Quantitative Analysis," Working Papers 149182, University of Victoria, Resource Economics and Policy.
    5. Brennan A. McLachlan & G. Cornelis van Kooten, 2022. "Reforming Canada's dairy supply management scheme and the consequences for international trade," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 70(1), pages 21-39, March.
    6. Susanne M. Schennach & Yingyao Hu & Arthur Lewbel, 2007. "Nonparametric identification of the classical errors-in-variables model without side information," Boston College Working Papers in Economics 674, Boston College Department of Economics.
    7. Coën, Alain & Hübner, Georges, 2009. "Risk and performance estimation in hedge funds revisited: Evidence from errors in variables," Journal of Empirical Finance, Elsevier, vol. 16(1), pages 112-125, January.
    8. Coen, Alain & Racicot, Francois-Eric, 2007. "Capital asset pricing models revisited: Evidence from errors in variables," Economics Letters, Elsevier, vol. 95(3), pages 443-450, June.
    9. Yang, Fan & Havranek, Tomas & Irsova, Zuzana & Novak, Jiri, 2022. "Hedge Fund Performance: A Quantitative Survey," EconStor Preprints 260612, ZBW - Leibniz Information Centre for Economics.
    10. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    11. repec:kap:iaecre:v:15:y:2009:i:1:p:30-43 is not listed on IDEAS
    12. Alain Coen & Francois-Éric Racicot, 2006. "A New Approach Based on Cumulants for Estimating Financial Regression Models with Errors in the Variables: the Fama and French Model Revisited," RePAd Working Paper Series UQO-DSA-wp142006, Département des sciences administratives, UQO.
    13. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "EU-wide individual Farm Model for CAP Analysis (IFM-CAP): Application to Crop Diversification Policy," 2015 Conference, August 9-14, 2015, Milan, Italy 212155, International Association of Agricultural Economists.
    14. Lisa Baldi & Filippo Arfini & Sara Calzolai & Michele Donati, 2023. "An Impact Assessment of GHG Taxation on Emilia-Romagna Dairy Farms through an Agent-Based Model Based on PMP," Land, MDPI, vol. 12(7), pages 1-24, July.
    15. Hu, Yingyao & Schennach, Susanne & Shiu, Ji-Liang, 2022. "Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 226(2), pages 269-294.
    16. Erkin Diyarbakirlioglu & Marc Desban & Souad Lajili Jarjir, 2022. "Asset pricing models with measurement error problems: A new framework with Compact Genetic Algorithms," Post-Print hal-03643083, HAL.
    17. Arata, Linda & Donati, Michele & Sckokai, Paolo & Arfini, Filippo, 2014. "Incorporating risk in a positive mathematical programming framework: a new methodological approach," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182659, European Association of Agricultural Economists.
    18. Meijer, Erik & Spierdijk, Laura & Wansbeek, Tom, 2017. "Consistent estimation of linear panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 200(2), pages 169-180.
    19. van Kooten, G. Cornelis & Johnston, Craig, 2014. "Global impacts of Russian log export restrictions and the Canada–U.S. lumber dispute: Modeling trade in logs and lumber," Forest Policy and Economics, Elsevier, vol. 39(C), pages 54-66.
    20. Pérez-Blanco, C.D. & Gutiérrez-Martín, C., 2017. "Buy me a river: Use of multi-attribute non-linear utility functions to address overcompensation in agricultural water buyback," Agricultural Water Management, Elsevier, vol. 190(C), pages 6-20.
    21. Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "L’estimation de modèles de régression linéaire autorégressifs avec erreurs résiduelles autocorrélées et erreurs sur les variables," L'Actualité Economique, Société Canadienne de Science Economique, vol. 73(1), pages 507-523, mars-juin.

    More about this item

    Keywords

    Demand and Price Analysis; Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ucdavw:181288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/daucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.