IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/330178.html
   My bibliography  Save this paper

Water Resources in South Asia: An Assessment of Climate Related Vulnerabilities

Author

Listed:
  • Markandya, Anil
  • Golub, Elena
  • Sahin, Sebnem
  • Golub, Alexander
  • Kumer Mitra, Bijon
  • Taheripour, Farzad
  • Narayanan, Badri

Abstract

South Asia faces serious challenges in water availability, which are expected to increase in the coming years as populations and demand for food grow, the competition for water from non-agricultural sectors increases, and climate change aggravates the water stress in some river basins. Even without taking account of climate change the amount of water available for irrigation is estimated to drop by between 20-40 percent in several important river basins in the region. The additional impact of climate change is variable and could be positive in some basins but add to the scarcity in others. Also, sea level rise and water-related extreme events are predicted to have an adverse effect on South Asian economies. This paper separates the implications of the growing scarcity of water in South Asia for economic and demographic reasons from those related to climate change. Furthermore, it evaluates specific measures that could be taken to addresses the economic and physical constraints against sustainable water management in the region. The aim is to develop a comprehensive analytical basis to support South Asia’s decision-makers in promoting policies that achieve higher levels of water efficiency, facilitate economic growth in the presence of water scarcity, and promote climate resilience to help farmers to maintain their income in the face of severe climate conditions. The following simulations are developed using the model: BAU describes a baseline to 2050 for South Asian economies. Scenario 1 analyzes the impacts of improvements in water use efficiency in irrigation on the agricultural sector and the economy more widely. Scenario 2 reports the economy-wide impacts of climate-induced water stress. Scenario 3 examines the energy-water-climate linkages, specifically from water for electricity. Scenario 4 estimates the economy-wide impacts of sea level rise and more frequent extreme events in the South Asian region.

Suggested Citation

  • Markandya, Anil & Golub, Elena & Sahin, Sebnem & Golub, Alexander & Kumer Mitra, Bijon & Taheripour, Farzad & Narayanan, Badri, 2017. "Water Resources in South Asia: An Assessment of Climate Related Vulnerabilities," Conference papers 330178, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:330178
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/330178/files/8671_Markandya.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farzad Taheripour & Thomas W. Hertel & Wallace E. Tyner, 2011. "Implications of biofuels mandates for the global livestock industry: a computable general equilibrium analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 42(3), pages 325-342, May.
    2. Mark W. Rosegrant & Claudia Ringler & Tingju Zhu & Simla Tokgoz & Prapti Bhandary, 2013. "Water and food in the bioeconomy: challenges and opportunities for development," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 139-150, November.
    3. World Bank, 2014. "Republic of India : Accelerating Agricultural Productivity Growth," World Bank Publications - Reports 18736, The World Bank Group.
    4. Radha, Y. & Reddy, K. Yella & Rao, G. Subba & Chandra, S. Ramesh & Babu, G. Kishore, 2009. "Water-saving Rice Production Technologies in Krishna Western Delta Command of Andhra Pradesh – An Economic Analysis," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 22(Conferenc).
    5. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    6. Taheripour, Farzad & Tyner, Wallace E., 2011. "Global Land Use Changes and Consequent CO2 Emissions due to US Cellulosic Biofuel Program: A Preliminary Analysis," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103559, Agricultural and Applied Economics Association.
    7. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taheripour, Farzad & Hertel, Thomas W. & Gopalakrishnan, Badri N. & Sahin, Sebnem & Escurra, Jorge J., 2015. "Agricultural production, irrigation, climate change, and water scarcity in India," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205591, Agricultural and Applied Economics Association.
    2. Mwaura, Francis, 2014. "Understanding dynamism of land ownership, use and patterns of allocation for the locals before inviting foreign investors: the Ugandan case," Conference papers 332543, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    4. Narayanan, Badri G. & Taheripour, Farzad & Hertel, Thomas W. & Sahin, Sebnem & Escurra, Jorge J., 2015. "Water Scarcity in South Asia: A Dynamic Computable General Equilibrium Analysis," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205651, Agricultural and Applied Economics Association.
    5. Alvaro Calzadilla & Katrin Rehdanz & Richard S.J. Tol, 2008. "The Eonomic Impact Of More Sustainable Water Use In Agriculture: A Computable General Equilibrium Analysis," Working Papers FNU-169, Research unit Sustainability and Global Change, Hamburg University, revised Dec 2008.
    6. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    7. Arndt Feuerbacher & Jonas Luckmann, Humboldt-University of Berlin, 2017. "Modelling field operations in a computable general equilibrium model: An application to labour shortages in Bhutan," EcoMod2017 10464, EcoMod.
    8. Dihel, Nora, 2005. "Impact of services barriers on effective rates of protection in agriculture and manufacturing," Conference papers 331387, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. De Miguel, Carlos & Ludena, Carlos & Schuschny, Andres, 2009. "Climate Change and Reduction of CO2 Emissions: the role of Developing Countries in Carbon Trade Markets," Conference papers 331823, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Sahin, Sebnem & Narayanan, Badri & Aleksandrova, Svetlana, 2019. "Top Down and Bottom-up Approaches to Climate Change Adaptation in Bulgaria," Conference papers 330196, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    12. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    13. Tsung-Chen Lee & Hsiao-Chi Chen & Shi-Miin Liu, 2013. "Optimal strategic regulations in international emissions trading under imperfect competition," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(1), pages 39-57, January.
    14. Roberto Roson & Francesco Bosello, 2007. "Estimating a Climate Change Damage Function through General Equilibrium Modeling," Working Papers 2007_08, Department of Economics, University of Venice "Ca' Foscari".
    15. Doumax-Tagliavini, Virginie & Sarasa, Cristina, 2018. "Looking towards policies supporting biofuels and technological change: Evidence from France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 430-439.
    16. Yujing Niu & Wenying Chen & Zongxin Wu, 2013. "The Economic and Environmental Impact on China of Carbon Tariffs Based on Gage Model," Energy & Environment, , vol. 24(7-8), pages 1295-1307, December.
    17. Ali, Tariq & Huang, Jikun & Yang, Jun, 2013. "Impact assessment of global and national biofuels developments on agriculture in Pakistan," Applied Energy, Elsevier, vol. 104(C), pages 466-474.
    18. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
    19. Carmen Aina & Lorenzo Cappellari & Marco Francesconi, 2010. "Student Performance may not Improve when Universities are Choosier," CESifo Working Paper Series 3264, CESifo.
    20. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:330178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.