IDEAS home Printed from https://ideas.repec.org/p/ags/ndtr80/311594.html
   My bibliography  Save this paper

The Use of Population analysis to forecast U.S. automobile acquisitions

Author

Listed:
  • Bellock, Richard
  • Kutteroff, Lora

Abstract

No abstract is available for this item.

Suggested Citation

  • Bellock, Richard & Kutteroff, Lora, 1983. "The Use of Population analysis to forecast U.S. automobile acquisitions," Transportation Research Forum Proceedings 1980s 311594, Transportation Research Forum.
  • Handle: RePEc:ags:ndtr80:311594
    DOI: 10.22004/ag.econ.311594
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/311594/files/agecon-trf-0189.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.311594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ward, Ronald W. & Tilley, Daniel S., 1980. "Time Varying Parameters with Random Components: The Orange Juice Industry," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 12(2), pages 5-13, December.
    2. Johnson, Terry R, 1978. "A Cross-Section Analysis of the Demand for New and Used Automobiles in the United States X1-ab," Economic Inquiry, Western Economic Association International, vol. 16(4), pages 531-548, October.
    3. Cooley, Thomas F & Prescott, Edward C, 1976. "Estimation in the Presence of Stochastic Parameter Variation," Econometrica, Econometric Society, vol. 44(1), pages 167-184, January.
    4. Hess, Alan C, 1977. "A Comparison of Automobile Demand Equations," Econometrica, Econometric Society, vol. 45(3), pages 683-701, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olawale Awe O. & Adedayo Adepoju A., 2018. "Modified Recursive Bayesian Algorithm For Estimating Time-Varying Parameters In Dynamic Linear Models," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 258-293, June.
    2. Marfatia, Hardik A., 2015. "Monetary policy's time-varying impact on the US bond markets: Role of financial stress and risks," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 103-123.
    3. Mandler, Martin, 2007. "The Taylor rule and interest rate uncertainty in the U.S. 1955-2006," MPRA Paper 2340, University Library of Munich, Germany.
    4. Min, Chung-ki, 1998. "A Gibbs sampling approach to estimation and prediction of time-varying-parameter models," Computational Statistics & Data Analysis, Elsevier, vol. 27(2), pages 171-194, April.
    5. Li, Gang & Song, Haiyan & Witt, Stephen F., 2006. "Time varying parameter and fixed parameter linear AIDS: An application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 22(1), pages 57-71.
    6. N. Groenewold & P. Fraser, 1999. "Forecasting Beta: How well does the 'five year rule of thumb' do?," Economics Discussion / Working Papers 99-01, The University of Western Australia, Department of Economics.
    7. Dimitris Korobilis, 2021. "High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 493-504, March.
    8. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    9. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
    10. João Alberto De Negri & Celso Garrido & Vinicius Rodrigues Peçanha & Leonardo E. Stanley, 2010. "La inserción de América Latina en las cadenas globales de valor," Serie Red MERCOSUR, Red Mercosur, edition 1, volume 1, number 19 edited by Victor Prochnik (Coordinador), Spring.
    11. repec:spo:wpmain:info:hdl:2441/1461 is not listed on IDEAS
    12. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    13. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    14. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2008. "How Structural Are Structural Parameters?," NBER Chapters, in: NBER Macroeconomics Annual 2007, Volume 22, pages 83-137, National Bureau of Economic Research, Inc.
    15. Aurélien Goutsmedt & Erich Pinzon-Fuchs & Matthieu Renault & Francesco Sergi, 2015. "Criticizing the Lucas Critique: Macroeconometricians' Response to Robert Lucas," Post-Print halshs-01179114, HAL.
    16. Jan Marc Berk, 1999. "Measuring inflation expectations: a survey data approach," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1467-1480.
    17. Raimundo Soto, "undated". "Nonlinearities in the Demand for money: A Neural Network Approach," ILADES-UAH Working Papers inv107, Universidad Alberto Hurtado/School of Economics and Business.
    18. Marfatia, Hardik A. & Gupta, Rangan & Miller, Stephen, 2020. "125 ​Years of time-varying effects of fiscal policy on financial markets," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 303-320.
    19. Hardik A. Marfatia & Rangan Gupta & Keagile Lesame, 2021. "Dynamic Impact of Unconventional Monetary Policy on International REITs," JRFM, MDPI, vol. 14(9), pages 1-19, September.
    20. Lee, Jonq-Ying, 1984. "Demand Interrelationships Among Fruit Beverages," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 16(2), pages 1-9, December.
    21. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ndtr80:311594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.trforum.org/journal/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.