IDEAS home Printed from https://ideas.repec.org/p/ags/ifma17/345800.html
   My bibliography  Save this paper

Pr - Increase Feedlot Profitablity By Differentiating Between Beef Breeds

Author

Listed:
  • Oosthuizen, P.L.
  • Maré, F.A.

Abstract

Feedlots currently feed animals according to a pre-determined feeding period that will result in market acceptable carcass weights. However, feedlots are price takers on the input and output side and the only way they can increase their profitability is to increase the productivity of their inputs. Precision agriculture in the feedlot, through incorporating the unique genetic growth potential of a breed, was identified to increase feedlot profitability and sustainability. This was done through applying production economic theory and calculating the point in time where the value of the marginal product is equal to the marginal factor cost and profit is thus maximized for each breed. The additional gross profit that can be generated through applying the PMFP is 6% according to the specific case study. The study indicates that the differences in the genetic growth potential of breeds can be used as a management tool in order to generate additional profit from any breed.

Suggested Citation

  • Oosthuizen, P.L. & Maré, F.A., 2017. "Pr - Increase Feedlot Profitablity By Differentiating Between Beef Breeds," 21st Congress, Edinburgh, Scotland, July 2-7, 2017 345800, International Farm Management Association.
  • Handle: RePEc:ags:ifma17:345800
    DOI: 10.22004/ag.econ.345800
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/345800/files/17_PR_OosthuizenMare_w4_p1.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.345800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Debertin, David L., 2012. "Agricultural Production Economics: The Art of Production Theory," Monographs: Applied Economics, AgEcon Search, number 158320, November.
    2. Debertin, David L., 2012. "Agricultural Production Economics, Second Edition," Monographs: Applied Economics, AgEcon Search, number 158319, November.
    3. Tedeschi, Luis Orlindo & Fox, Danny G. & Guiroy, Pablo J., 2004. "A decision support system to improve individual cattle management. 1. A mechanistic, dynamic model for animal growth," Agricultural Systems, Elsevier, vol. 79(2), pages 171-204, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangile, Rajabu Joseph, 2015. "Efficiency In Production By Smallholder Rice Farmers Under Cooperative Irrigation Schemes In Pwani And Morogoro Regions, Tanzania," Research Theses 265681, Collaborative Masters Program in Agricultural and Applied Economics.
    2. Linmei Shang & Jifeng Wang & David Schäfer & Thomas Heckelei & Juergen Gall & Franziska Appel & Hugo Storm, 2024. "Surrogate modelling of a detailed farm‐level model using deep learning," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(1), pages 235-260, February.
    3. Vladimir F. Krapivin & Costas A. Varotsos & Vladimir Yu. Soldatov, 2017. "The Earth’s Population Can Reach 14 Billion in the 23rd Century without Significant Adverse Effects on Survivability," IJERPH, MDPI, vol. 14(8), pages 1-19, August.
    4. Devran Sanli & Aziz Konukman, 2021. "The Impact of High-Tech Exports on Income: Findings on the Translog Production Function," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul University, Faculty of Economics, vol. 71(71-2), pages 457-498, December.
    5. Bahari Bahari & Haji Saediman & Laode Geo & Norma Arif, 2019. "Government Institutional Support in Increasing the Productivity of Soybean Seed Breeders Indonesia," International Journal of Economics and Financial Issues, Econjournals, vol. 9(6), pages 142-150.
    6. Khafagy, Amr & Vigani, Mauro, 2022. "Technical change and the Common Agricultural Policy," Food Policy, Elsevier, vol. 109(C).
    7. Aritri Chakravarty, 2022. "Impact of Information on Technical Efficiency of Agricultural Production in India," BASE University Working Papers 14/2022, BASE University, Bengaluru, India.
    8. Elbakidze, Levan & Fa’anunu, Benjamin & Mamula, Aaron & Taylor, R. Garth, 2017. "Evaluating economic efficiency of a water buyback program: The Klamath irrigation project," Resource and Energy Economics, Elsevier, vol. 48(C), pages 68-82.
    9. Karolina Pawlak & Luboš Smutka & Pavel Kotyza, 2021. "Agricultural Potential of the EU Countries: How Far Are They from the USA?," Agriculture, MDPI, vol. 11(4), pages 1-21, March.
    10. Al-Amin, A.K.M. Abdullah & Lowenberg-DeBoer, James & Franklin, Kit & Behrendt, Karl, 2021. "Economic Implications of Field Size for Autonomous Arable Crop Equipment," Land, Farm & Agribusiness Management Department 316595, Harper Adams University, Land, Farm & Agribusiness Management Department.
    11. Rudi Bratamanggala, 2017. "Implications of Tax Receivables and Retribution for the Economic Growth of Indonesia," European Research Studies Journal, European Research Studies Journal, vol. 0(3A), pages 570-579.
    12. Vandercasteelen, Joachim & Beyene, Seneshaw Tamru & Minten, Bart & Swinnen, Johan, 2018. "Cities and agricultural transformation in Africa: Evidence from Ethiopia," World Development, Elsevier, vol. 105(C), pages 383-399.
    13. Stefanos Xenarios & Heracles Polatidis, 2015. "Alleviating climate change impacts in rural Bangladesh: a PROMETHEE outranking-based approach for prioritizing agricultural interventions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(5), pages 963-985, October.
    14. Nie, Fei & Li, Jian & Bi, Xiang & Li, Gucheng, 2022. "Agricultural trade liberalization and domestic fertilizer use: Evidence from China-ASEAN free trade agreement," Ecological Economics, Elsevier, vol. 195(C).
    15. Oosthuizen, P. L. & Maré, F. A., 2018. "The profit-maximising feeding period for different breeds of beef cattle," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 57(2), June.
    16. Joseph Kangile, Rajabu, 2015. "Efficiency in Production By Smallholder Rice Farmers Under Cooperative Irrigation Schemes in Pwani and Morogoro Regions, Tanzania," Research Theses 243447, Collaborative Masters Program in Agricultural and Applied Economics.
    17. Lebeta, Temesgen Hirko, 2017. "Participation In And Impact Of Small-Scale Irrigation Practice On Household Income: The Case Of Abay Chomen District Of Oromia National Regional State, Ethiopia," Research Theses 276456, Collaborative Masters Program in Agricultural and Applied Economics.
    18. Al-Amin, A.K.M. Abdullah & Lowenberg-DeBoer, James & Franklin, Kit & Behrendt, Karl, 2021. "Economic Implications of Field Size for Autonomous Arable Crop Equipment," Agri-Tech Economics Papers 316595, Harper Adams University, Land, Farm & Agribusiness Management Department.
    19. Faure, Jérôme & Mouysset, Lauriane & Gaba, Sabrina, 2023. "Combining incentives with collective action to provide pollination and a bundle of ecosystem services in farmland," Ecosystem Services, Elsevier, vol. 63(C).
    20. Okello, Julius Juma & Swinton, Scott M., 2005. "Compliance with International Food Safety Standards in Kenya's Green Bean Industry: A Paired Case Study of Small and Large Family Farms," 2005 Annual meeting, July 24-27, Providence, RI 19241, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    More about this item

    Keywords

    Livestock Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ifma17:345800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/ifmaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.