IDEAS home Printed from https://ideas.repec.org/p/ags/iefi12/144973.html
   My bibliography  Save this paper

Information Demand and Agriculture Commodity Prices

Author

Listed:
  • Peri, Massimo
  • Vandone, Daniela
  • Baldi, Lucia

Abstract

This paper investigates the effect of information flow on corn futures price variability for the period January 2004 -July 2011. The theoretical framework is the Mixture Distribution Hypothesis, that posits a joint dependence of return volatility and information. The main contribution of this article is that we use two different proxy for the observed component of information flow that allow to separate the effect of supply (News) and demand (Internet Search Volume) of information. Empirical estimates highlight that: i) results support the MDH since observed volatility persistence appears to be related to the information flow; ii) variation in information demand has a significant effect on volatility of futures corn returns even controlling for variation in information supply and such result can be interpreted in light of behavioural finance.

Suggested Citation

  • Peri, Massimo & Vandone, Daniela & Baldi, Lucia, 2012. "Information Demand and Agriculture Commodity Prices," 2012 International European Forum, February 13-17, 2012, Innsbruck-Igls, Austria 144973, International European Forum on System Dynamics and Innovation in Food Networks.
  • Handle: RePEc:ags:iefi12:144973
    DOI: 10.22004/ag.econ.144973
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/144973/files/32-Peri-Vandone-Baldi.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.144973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    2. Matthias Bank & Martin Larch & Georg Peter, 2011. "Google search volume and its influence on liquidity and returns of German stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 25(3), pages 239-264, September.
    3. Laura L. Veldkamp, 2006. "Media Frenzies in Markets for Financial Information," American Economic Review, American Economic Association, vol. 96(3), pages 577-601, June.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Jian Yang & David A. Bessler & David J. Leatham, 2001. "Asset storability and price discovery in commodity futures markets: A new look," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 279-300, March.
    6. Hal R. Varian, 2007. "The Economics of Internet Search," 'Angelo Costa' Lectures Serie, SIPI Spa, issue Lect. VII.
    7. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    8. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
    9. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    10. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-321, March.
    11. Eric Zivot, 2008. "Practical Issues in the Analysis of Univariate GARCH Models," Working Papers UWEC-2008-03-FC, University of Washington, Department of Economics.
    12. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    13. Mitchell, Mark L & Mulherin, J Harold, 1994. "The Impact of Public Information on the Stock Market," Journal of Finance, American Finance Association, vol. 49(3), pages 923-950, July.
    14. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    15. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    16. Ederington, Louis H & Lee, Jae Ha, 1993. "How Markets Process Information: News Releases and Volatility," Journal of Finance, American Finance Association, vol. 48(4), pages 1161-1191, September.
    17. Harris, Lawrence, 1987. "Transaction Data Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 127-141, June.
    18. Stephan Meier & Charles Sprenger, 2007. "Impatience and credit behavior: evidence from a field experiment," Working Papers 07-3, Federal Reserve Bank of Boston.
    19. Kalev, Petko S. & Liu, Wai-Man & Pham, Peter K. & Jarnecic, Elvis, 2004. "Public information arrival and volatility of intraday stock returns," Journal of Banking & Finance, Elsevier, vol. 28(6), pages 1441-1467, June.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo PERI & Daniela VANDONE & Lucia BALDI, 2012. "Internet, noise trading and commodity prices," Departmental Working Papers 2012-07, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    2. Peri, Massimo & Vandone, Daniela & Baldi, Lucia, 2014. "Internet, noise trading and commodity futures prices," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 82-89.
    3. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    4. Georgios Bampinas & Theodore Panagiotidis & Christina Rouska, 2019. "Volatility persistence and asymmetry under the microscope: the role of information demand for gold and oil," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(1), pages 180-197, February.
    5. Moussa, Faten & Delhoumi, Ezzeddine & Ouda, Olfa Ben, 2017. "Stock return and volatility reactions to information demand and supply," Research in International Business and Finance, Elsevier, vol. 39(PA), pages 54-67.
    6. Semen Son Turan, 2014. "Internet Search Volume and Stock Return Volatility: The Case of Turkish Companies," Information Management and Business Review, AMH International, vol. 6(6), pages 317-328.
    7. Shen, Dehua & Li, Xiao & Zhang, Wei, 2018. "Baidu news information flow and return volatility: Evidence for the Sequential Information Arrival Hypothesis," Economic Modelling, Elsevier, vol. 69(C), pages 127-133.
    8. Sam Howison & David Lamper, 2001. "Trading volume in models of financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 119-135.
    9. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    10. Shen, Dehua & Zhang, Wei & Xiong, Xiong & Li, Xiao & Zhang, Yongjie, 2016. "Trading and non-trading period Internet information flow and intraday return volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 519-524.
    11. Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
    12. Strohsal, Till & Weber, Enzo, 2015. "Time-varying international stock market interaction and the identification of volatility signals," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 28-36.
    13. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    14. Bertelsen, Kristoffer Pons & Borup, Daniel & Jakobsen, Johan Stax, 2021. "Stock market volatility and public information flow: A non-linear perspective," Economics Letters, Elsevier, vol. 204(C).
    15. Robert F. Engle & Martin Klint Hansen & Asger Lunde, 2012. "And Now, The Rest of the News: Volatility and Firm Specific News Arrival," CREATES Research Papers 2012-56, Department of Economics and Business Economics, Aarhus University.
    16. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    17. Zhang, Yongjie & Feng, Lina & Jin, Xi & Shen, Dehua & Xiong, Xiong & Zhang, Wei, 2014. "Internet information arrival and volatility of SME PRICE INDEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 70-74.
    18. Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898, arXiv.org, revised Oct 2014.
    19. SENARATHNE W Chamil & JIANGUO Wei, 2018. "Do Investors Mimic Trading Strategies Of Foreign Investors Or The Market: Implications For Capital Asset Pricing," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 13(3), pages 171-205, December.
    20. Siwen Zhou, 2021. "Exploring the driving forces of the Bitcoin currency exchange rate dynamics: an EGARCH approach," Empirical Economics, Springer, vol. 60(2), pages 557-606, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iefi12:144973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/ilbonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.