IDEAS home Printed from https://ideas.repec.org/p/ags/iaae21/315064.html
   My bibliography  Save this paper

Determinants of Regional Raw Milk Prices in Russia

Author

Listed:
  • Kresova, Svetlana
  • Hess, Sebastian

Abstract

Drivers of regional milk price differences across Russian regions are difficult to determine due to limited data availability and restrictions on data collection. In this study, official data from Russian regions for the period from 2013 to 2018 was analysed based on 18 predictor variables in order to explain the regional raw milk price. Due to various data-based restrictions, the use of conventional panel regression models was limited and the analysis was therefore performed based on a Random Forest (RF) machine learning algorithm. Model training and hyperparameter optimization was performed on the training data set with time folds cross-validation. The findings of the study showed that the RF algorithm has a good predictive performance in the test data set even with the default RF values. Finally, the RF variable importance showed that income, gross regional product, livestock density, and milk yield are the four most important variables for explaining the variation in regional milk prices.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kresova, Svetlana & Hess, Sebastian, 2021. "Determinants of Regional Raw Milk Prices in Russia," 2021 Conference, August 17-31, 2021, Virtual 315064, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae21:315064
    DOI: 10.22004/ag.econ.315064
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/315064/files/0-0_Paper_18614_handout_127_0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.315064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    2. Carvalho, Glauco Rodrigues & Bessler, David & Hemme, Torsten & Schröer-Merker, Eva, 2015. "Understanding International Milk Price Relationships," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196692, Southern Agricultural Economics Association.
    3. Helmut Lütkepohl & Fang Xu, 2012. "The role of the log transformation in forecasting economic variables," Empirical Economics, Springer, vol. 42(3), pages 619-638, June.
    4. Petrick, Martin & Götz, Linde, 2017. "The expansion of dairy herds in Russia and Kazakhstan after the import ban on Western food products," 57th Annual Conference, Weihenstephan, Germany, September 13-15, 2017 261996, German Association of Agricultural Economists (GEWISOLA).
    5. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    6. Hugo Storm & Kathy Baylis & Thomas Heckelei, 2020. "Machine learning in agricultural and applied economics," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 849-892.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svetlana Kresova & Sebastian Hess, 2022. "Identifying the Determinants of Regional Raw Milk Prices in Russia Using Machine Learning," Agriculture, MDPI, vol. 12(7), pages 1-18, July.
    2. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    3. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    4. Faisal Alsayegh & Moh A Alkhamis & Fatima Ali & Sreeja Attur & Nicholas M Fountain-Jones & Mohammad Zubaid, 2022. "Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-15, January.
    5. Franck Ramaharo & Fitiavana Randriamifidy, 2023. "Determinants of renewable energy consumption in Madagascar: Evidence from feature selection algorithms," Papers 2401.13671, arXiv.org.
    6. Nanna Munck & Patrick Murigu Kamau Njage & Pimlapas Leekitcharoenphon & Eva Litrup & Tine Hald, 2020. "Application of Whole‐Genome Sequences and Machine Learning in Source Attribution of Salmonella Typhimurium," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1693-1705, September.
    7. Tanzeela Khalid & Raphael Aggio & Paul White & Ben De Lacy Costello & Raj Persad & Huda Al-Kateb & Peter Jones & Chris S Probert & Norman Ratcliffe, 2015. "Urinary Volatile Organic Compounds for the Detection of Prostate Cancer," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-15, November.
    8. Sara Saadatmand & Khodakaram Salimifard & Reza Mohammadi & Alex Kuiper & Maryam Marzban & Akram Farhadi, 2023. "Using machine learning in prediction of ICU admission, mortality, and length of stay in the early stage of admission of COVID-19 patients," Annals of Operations Research, Springer, vol. 328(1), pages 1043-1071, September.
    9. Gehan A. Mousa & Elsayed A. H. Elamir & Khaled Hussainey, 2022. "Using machine learning methods to predict financial performance: Does disclosure tone matter?," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 19(1), pages 93-112, March.
    10. Carlos Família & Sarah R Dennison & Alexandre Quintas & David A Phoenix, 2015. "Prediction of Peptide and Protein Propensity for Amyloid Formation," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    11. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    12. Peiró-Signes, Ángel & Segarra-Oña, Marival & Trull-Domínguez, Óscar & Sánchez-Planelles, Joaquín, 2022. "Exposing the ideal combination of endogenous–exogenous drivers for companies’ ecoinnovative orientation: Results from machine-learning methods," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    13. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    14. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Zakia Salod & Ozayr Mahomed, 2023. "VPAgs-Dataset4ML: A Dataset to Predict Viral Protective Antigens for Machine Learning-Based Reverse Vaccinology," Data, MDPI, vol. 8(2), pages 1-12, February.
    17. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    18. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    19. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    20. Daniel Cooley & Steven M. Smith, 2022. "Center Pivot Irrigation Systems as a Form of Drought Risk Mitigation in Humid Regions," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 135-171, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Demand and Price Analysis; Livestock Production/Industries;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae21:315064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.