IDEAS home Printed from https://ideas.repec.org/p/ags/iaae09/51667.html
   My bibliography  Save this paper

Optimal Farm Size in Russian Agriculture

Author

Listed:
  • Svetlov, Nikolai M.
  • Hockmann, Heinrich

Abstract

A set of dynamic DEA models is applied to investigate the determinants of farm size of Moscow oblast corporate farms in the period 1996-2004. New institutional economics is found to be more relevant to explaining farm sizes and their changes than the neo-classical framework. The results prove the hypothesis that the development of farm size is mainly caused by reducing transaction costs associated with getting access to product markets.

Suggested Citation

  • Svetlov, Nikolai M. & Hockmann, Heinrich, 2009. "Optimal Farm Size in Russian Agriculture," 2009 Conference, August 16-22, 2009, Beijing, China 51667, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae09:51667
    DOI: 10.22004/ag.econ.51667
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/51667/files/SvetlovHockmann_OptimalFarmSize.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.51667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Curtiss, Jarmila & Balmann, Alfons & Dautzenberg, Kirsti & Happe, Kathrin (ed.), 2006. "Agriculture in the face of changing markets, institutions and policies: Challenges and strategies," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 33, number 93012.
    2. Lerman, Zvi, 1998. "Does Land Reform Matter? Some Experiences from the Former Soviet Union," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 25(3), pages 307-330.
    3. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    4. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    5. Jiro Nemoto & Mika Goto, 2003. "Measurement of Dynamic Efficiency in Production: An Application of Data Envelopment Analysis to Japanese Electric Utilities," Journal of Productivity Analysis, Springer, vol. 19(2), pages 191-210, April.
    6. Lerman, Zvi, 2001. "Agriculture in transition economies: from common heritage to divergence," Agricultural Economics, Blackwell, vol. 26(2), pages 95-114, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derek Byerlee & Klaus Deininger, 2013. "The Rise of Large Farms in Land-Abundant Countries: Do They Have a Future?," Palgrave Macmillan Books, in: Stein T. Holden & Keijiro Otsuka & Klaus Deininger (ed.), Land Tenure Reform in Asia and Africa, chapter 14, pages 333-353, Palgrave Macmillan.
    2. Salzwedel, Arvid & Huttel, Silke & Odening, Martin, 2012. "Measurement Of Dynamic Efficiency Using Data Envelopment Analysis – First Evidence From West German Dairy Farms," 52nd Annual Conference, Stuttgart, Germany, September 26-28, 2012 137166, German Association of Agricultural Economists (GEWISOLA).
    3. Rada, Nicholas & Liefert, William & Liefert, Olga, 2017. "Productivity Growth and the Revival of Russian Agriculture," Economic Research Report 256716, United States Department of Agriculture, Economic Research Service.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svetlov, Nikolai M., 2007. "Corporate farm size determinants in transitional economy: the case of the Moscow region," 102nd Seminar, May 17-18, 2007, Moscow, Russia 10017, European Association of Agricultural Economists.
    2. Lee, Boon L. & Worthington, Andrew C., 2014. "Technical efficiency of mainstream airlines and low-cost carriers: New evidence using bootstrap data envelopment analysis truncated regression," Journal of Air Transport Management, Elsevier, vol. 38(C), pages 15-20.
    3. Fallahi, Alireza & Ebrahimi, Reza & Ghaderi, S.F., 2011. "Measuring efficiency and productivity change in power electric generation management companies by using data envelopment analysis: A case study," Energy, Elsevier, vol. 36(11), pages 6398-6405.
    4. Chiu, Yung-ho & Huang, Kuei-Ying & Chang, Tzu-Han & Lin, Tai-Yu, 2021. "Efficiency assessment of coal mine use and land restoration: Considering climate change and income differences," Resources Policy, Elsevier, vol. 73(C).
    5. Georgios Digkas & Konstantinos Petridis & Alexander Chatzigeorgiou & Emmanouil Stiakakis & Ali Emrouznejad, 2020. "Measuring Spatio-temporal Efficiency: An R Implementation for Time-Evolving Units," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 843-864, December.
    6. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    7. Sampaio, Breno Ramos & Neto, Oswaldo Lima & Sampaio, Yony, 2008. "Efficiency analysis of public transport systems: Lessons for institutional planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(3), pages 445-454, March.
    8. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    9. da Silva, Aneirson Francisco & Miranda, Rafael de Carvalho & Marins, Fernando Augusto Silva & Dias, Erica Ximenes, 2024. "A new multiple criteria data envelopment analysis with variable return to scale: Applying bi-dimensional representation and super-efficiency analysis," European Journal of Operational Research, Elsevier, vol. 314(1), pages 308-322.
    10. Madau, Fabio A., 2015. "Technical and Scale Efficiency in the Italian Citrus Farming: Comparison between SFA and DEA Approaches," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 16(2), pages 1-13.
    11. Avkiran, Necmi K., 2001. "Investigating technical and scale efficiencies of Australian Universities through data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 35(1), pages 57-80, March.
    12. Pontus Mattsson & Jonas Månsson & Christian Andersson & Fredrik Bonander, 2018. "A bootstrapped Malmquist index applied to Swedish district courts," European Journal of Law and Economics, Springer, vol. 46(1), pages 109-139, August.
    13. Zhu, Joe, 2000. "Further discussion on linear production functions and DEA," European Journal of Operational Research, Elsevier, vol. 127(3), pages 611-618, December.
    14. Hirofumi Fukuyama & William L. Weber, 2017. "Japanese Bank Productivity, 2007–2012: A Dynamic Network Approach," Pacific Economic Review, Wiley Blackwell, vol. 22(4), pages 649-676, October.
    15. Alexandre Marinho & Simone de Souza Cardoso & Vivian Vicente de Almeida, 2009. "Avaliação da Eficiência Técnica dos Países nos Jogos Olímpicos de Pequim – 2008," Discussion Papers 1394, Instituto de Pesquisa Econômica Aplicada - IPEA.
    16. Michael Zschille, 2014. "Nonparametric measures of returns to scale: an application to German water supply," Empirical Economics, Springer, vol. 47(3), pages 1029-1053, November.
    17. Chen, Kaihua & Kou, Mingting & Fu, Xiaolan, 2018. "Evaluation of multi-period regional R&D efficiency: An application of dynamic DEA to China's regional R&D systems," Omega, Elsevier, vol. 74(C), pages 103-114.
    18. Mehdiloo, Mahmood & Podinovski, Victor V., 2019. "Selective strong and weak disposability in efficiency analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1154-1169.
    19. Kaoru Tone, 2001. "On Returns to Scale under Weight Restrictions in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 16(1), pages 31-47, July.
    20. Ole Bent Olesen & Niels Christian Petersen & Victor V. Podinovski, 2022. "Scale characteristics of variable returns-to-scale production technologies with ratio inputs and outputs," Annals of Operations Research, Springer, vol. 318(1), pages 383-423, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae09:51667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.