IDEAS home Printed from https://ideas.repec.org/p/ags/fflc08/49090.html
   My bibliography  Save this paper

Environmental Lifecycle Assessment for Policy Decision-Making and Analysis

Author

Listed:
  • Rajagopal, Deepak
  • Zilberman, David

Abstract

A key argument in the societal debate against polices to support biofuels is that production of these alternative fuels may in fact consume more energy than they generate and emit more greenhouse gases than they sequester (Fargione et al., 2008; Searchinger et al., 2008; Rajagopal and Zilberman, 2007; Farrell et al., 2006; Pimentel and Patzek, 2005). Metrics like net energy value, net carbon value and net petroleum offset are the basis for comparing the various fuels and are the source of these debates. The technique that underlies the calculation of these metrics is called lifecycle assessment or lifecycle analysis (LCA). A central aspect of LCA (described in detail in the next section) is it assumes linear technologies and produces outcomes that are numbers – how many units of energy are needed to produce a liter of ethanol fuel from a ton of corn. But as basic economics suggests, under reasonable conditions of some substitution between inputs and processes in production, this ratio is not a number but a function of prices. For instance, with energy being a ubiquitous input to production, a change in the relative price of different energy sources or with respect to other inputs will induce adjustments in the form of fuel switching, substitution between capital, energy and labor etc. This switching can occur at several levels in the production chain of a commodity. This will obviously alter the net carbon indicator for a fuel in the future. Also current LCA outcomes change only if the physical quantities of various inputs such as quantity of coal or electricity used in calculating LCA change. In other words, today LCA is capable of answering, how does a 10% decrease in the share of natural gas in the average electricity mix decrease the net carbon value of ethanol? But it is not capable of answering, if natural gas prices increase by 10% what is the impact on the net carbon value of ethanol? Obviously the latter is more intuitive and useful way of framing the question than the former from a policy standpoint. In this paper, we introduce a framework which can be used to derive LCA indicators directly as a function of underlying economic parameters and make it easier to simulate the impact of policies like pollution taxes and fuel mandates which in one way or another ultimately alter the relative price of commodities. Next we provide some background on current LCA literature. We then introduce a micro-economics based LCA that integrates prices directly into the lifecycle framework. We point out some implications of our model with simple illustrations. We finally describe directions for future work.

Suggested Citation

  • Rajagopal, Deepak & Zilberman, David, 2008. "Environmental Lifecycle Assessment for Policy Decision-Making and Analysis," Lifecycle Carbon Footprint of Biofuels Workshop, January 29, 2008, Miami Beach, Florida 49090, Farm Foundation.
  • Handle: RePEc:ags:fflc08:49090
    DOI: 10.22004/ag.econ.49090
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/49090/files/Environmental%20Lifecycle%20Assessment%20for%20Policy%20Decision-making%20and%20Analysis.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.49090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Delucchi, Mark, 2004. "Conceptual and Methodological Issues in Lifecycle Analyses of Transportation Fuels," Institute of Transportation Studies, Working Paper Series qt8n77n6z7, Institute of Transportation Studies, UC Davis.
    2. Satish Joshi, 1999. "Product Environmental Life‐Cycle Assessment Using Input‐Output Techniques," Journal of Industrial Ecology, Yale University, vol. 3(2‐3), pages 95-120, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piroli, Giuseppe & Rajcaniova, Miroslava & Ciaian, Pavel & Kancs, d׳Artis, 2015. "From a rise in B to a fall in C? SVAR analysis of environmental impact of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 921-930.
    2. Liu, Boying & Richard Shumway, C., 2016. "Substitution elasticities between GHG-polluting and nonpolluting inputs in agricultural production: A meta-regression," Energy Economics, Elsevier, vol. 54(C), pages 123-132.
    3. Thompson, Wyatt & Whistance, Jarrett & Meyer, Seth, 2011. "Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions," Energy Policy, Elsevier, vol. 39(9), pages 5509-5518, September.
    4. Liu, Boying & Shumway, C. Richard & Yoder, Jonathan K., 2017. "Lifecycle economic analysis of biofuels: Accounting for economic substitution in policy assessment," Energy Economics, Elsevier, vol. 67(C), pages 146-158.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannah Sharp & Josefine Grundius & Jukka Heinonen, 2016. "Carbon Footprint of Inbound Tourism to Iceland: A Consumption-Based Life-Cycle Assessment including Direct and Indirect Emissions," Sustainability, MDPI, vol. 8(11), pages 1-23, November.
    2. Gregory A. Norris, 2002. "Life Cycle Emission Distributions Within the Economy: Implications for Life Cycle Impact Assessment," Risk Analysis, John Wiley & Sons, vol. 22(5), pages 919-930, October.
    3. Kastner, Thomas & Kastner, Michael & Nonhebel, Sanderine, 2011. "Tracing distant environmental impacts of agricultural products from a consumer perspective," Ecological Economics, Elsevier, vol. 70(6), pages 1032-1040, April.
    4. Sergej Lisowski & Markus Berger & Justus Caspers & Klaus Mayr-Rauch & Georg Bäuml & Matthias Finkbeiner, 2020. "Criteria-Based Approach to Select Relevant Environmental SDG Indicators for the Automobile Industry," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    5. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    6. Lutsey, Nicholas P., 2008. "Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors," Institute of Transportation Studies, Working Paper Series qt5rd41433, Institute of Transportation Studies, UC Davis.
    7. Jukka Heinonen & Seppo Junnila, 2011. "A Carbon Consumption Comparison of Rural and Urban Lifestyles," Sustainability, MDPI, vol. 3(8), pages 1-16, August.
    8. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Steven Kraines & Yoshikuni Yoshida, 2004. "Process System Modelling of Production Technology Alternatives using Input- Output Tables with Sector Specific Units," Economic Systems Research, Taylor & Francis Journals, vol. 16(1), pages 21-32.
    10. Kammen, Daniel M. & Farrell, Alexander E & Plevin, Richard J & Jones, Andrew & Nemet, Gregory F & Delucchi, Mark, 2008. "Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis," Institute of Transportation Studies, Working Paper Series qt5qw5g6q2, Institute of Transportation Studies, UC Davis.
    11. Egilmez, Gokhan & Kucukvar, Murat & Tatari, Omer & Bhutta, M. Khurrum S., 2014. "Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 8-20.
    12. Tsakiridis, Andreas & O’Donoghue, Cathal & Hynes, Stephen & Kilcline, Kevin, 2020. "A Comparison of Environmental and Economic Sustainability across Seafood and Livestock Product Value Chains," Working Papers 309507, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    13. Cholapat Jongdeepaisal & Seigo Nasu, 2018. "Economic Impact Evaluation of a Biomass Power Plant Using a Technical Coefficient Pre-Adjustment in Hybrid Input-Output Analysis," Energies, MDPI, vol. 11(3), pages 1-11, March.
    14. Tukker, Arnold & Poliakov, Evgueni & Heijungs, Reinout & Hawkins, Troy & Neuwahl, Frederik & Rueda-Cantuche, José M. & Giljum, Stefan & Moll, Stephan & Oosterhaven, Jan & Bouwmeester, Maaike, 2009. "Towards a global multi-regional environmentally extended input-output database," Ecological Economics, Elsevier, vol. 68(7), pages 1928-1937, May.
    15. Lisa Lechner, 2018. "Good for some, bad for others: US investors and non-trade issues in preferential trade agreements," The Review of International Organizations, Springer, vol. 13(2), pages 163-187, June.
    16. Daniel M. Kammen & Alexander E. Farrell & Richard J. Plevin & Andrew D. Jones & Mark A. Delucchi & Gregory F. Nemet, 2007. "Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis," OECD/ITF Joint Transport Research Centre Discussion Papers 2007/2, OECD Publishing.
    17. Feng, Hongli & Rubin, Ofir & Babcock, Bruce A., 2008. "Greenhouse Gas Impacts of Ethanol from Iowa Corn: Life Cycle Analysis Versus System-Wide Accounting," Staff General Research Papers Archive 12871, Iowa State University, Department of Economics.
    18. Fan, Ailong & Xiong, Yuqi & Yang, Liu & Zhang, Haiying & He, Yapeng, 2023. "Carbon footprint model and low–carbon pathway of inland shipping based on micro–macro analysis," Energy, Elsevier, vol. 263(PE).
    19. Turner, Brian T. & Plevin, Richard J. & O'Hare, Michael & Farrell, Alexander E., 2007. "Creating Markets for Green Biofuels: Measuring and improving environmental performance," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0mm0m9xm, Institute of Transportation Studies, UC Berkeley.
    20. J. C. Minx & T. Wiedmann & R. Wood & G. P. Peters & M. Lenzen & A. Owen & K. Scott & J. Barrett & K. Hubacek & G. Baiocchi & A. Paul & E. Dawkins & J. Briggs & D. Guan & S. Suh & F. Ackerman, 2009. "Input-Output Analysis And Carbon Footprinting: An Overview Of Applications," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 187-216.

    More about this item

    Keywords

    Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:fflc08:49090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/farmfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.