IDEAS home Printed from https://ideas.repec.org/p/ags/feemei/251813.html
   My bibliography  Save this paper

Climate Change, Water Scarcity in Agriculture and the Economy-Wide Impacts in a CGE Framework

Author

Listed:
  • Ponce, Roberto
  • Parrado, Ramiro
  • Stehr, Alejandra
  • Bosello, Francesco

Abstract

This paper analyzes the economic impacts of changes in water availability due to climate change. We develop a new modeling approach as an alternative to include water as a production factor within a global CGE model. We tailor the structure of the ICES model to characterize the key features of the world economy with a detailed representation of the agricultural sector. In order to reach this objective, a new database has been built to explicitly consider water endowments, precipitation changes, and unitary irrigation costs. Results suggest different economic consequences of climate change depending on the specific region. Impacts are related to change in crop production, endowment demands, and international trade.

Suggested Citation

  • Ponce, Roberto & Parrado, Ramiro & Stehr, Alejandra & Bosello, Francesco, 2016. "Climate Change, Water Scarcity in Agriculture and the Economy-Wide Impacts in a CGE Framework," EIA: Climate Change: Economic Impacts and Adaptation 251813, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemei:251813
    DOI: 10.22004/ag.econ.251813
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/251813/files/NDL2016-079.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.251813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rashid Hassan & James Thurlow, 2011. "Macro–micro feedback links of water management in South Africa: CGE analyses of selected policy regimes," Agricultural Economics, International Association of Agricultural Economists, vol. 42(2), pages 235-247, March.
    2. Roberto Ponce & Francesco Bosello & Carlo Giupponi, 2012. "Integrating Water Resources into Computable General Equilibrium Models - A Survey," Working Papers 2012.57, Fondazione Eni Enrico Mattei.
    3. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    4. Decaluwe, B. & Patry, A. & Savard, L., 1999. "`When Water Is No Longer Heaven Sent: Comparative Pricing Analysis in an AGE Model," Papers 9905, Laval - Recherche en Politique Economique.
    5. Inocencio, Arlene & Kikuchi, Masao & Tonosaki, Manabu & Maruyama, Atsushi & Merrey, Douglas & Sally, Hilmy & de Jong, Ijsbrand, 2007. "Costs and performance of irrigation projects: A comparison of Sub-Saharan Africa and other developing regions," IWMI Research Reports H036214, International Water Management Institute.
    6. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    7. Olga DIUKANOVA & James LENNOX, 2008. "Modelling Regional General Equilibrium Effects and Irrigation in Canterbury," EcoMod2008 23800030, EcoMod.
    8. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    9. John P. Weyant, 1985. "General Economic Equilibrium as a Unifying Concept in Energy-Economic Modeling," Management Science, INFORMS, vol. 31(5), pages 548-563, May.
    10. Strzepek, Kenneth M. & Yohe, Gary W. & Tol, Richard S.J. & Rosegrant, Mark W., 2008. "The value of the high Aswan Dam to the Egyptian economy," Ecological Economics, Elsevier, vol. 66(1), pages 117-126, May.
    11. Alvaro Calzadilla & Katrin Rehdanz & Richard S.J. Tol, 2011. "Water scarcity and the impact of improved irrigation management: a computable general equilibrium analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 42(3), pages 305-323, May.
    12. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Ponce & Francesco Bosello & Carlo Giupponi, 2012. "Integrating Water Resources into Computable General Equilibrium Models - A Survey," Working Papers 2012.57, Fondazione Eni Enrico Mattei.
    2. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
    3. Teotónio, Carla & Rodríguez, Miguel & Roebeling, Peter & Fortes, Patrícia, 2020. "Water competition through the ‘water-energy’ nexus: Assessing the economic impacts of climate change in a Mediterranean context," Energy Economics, Elsevier, vol. 85(C).
    4. Jing Liu & Thomas Hertel & Farzad Taheripour, 2016. "Analyzing Future Water Scarcity in Computable General Equilibrium Models," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-30, December.
    5. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    7. Francesco Bosello & Lorenza Campagnolo & Raffaello Cervigni & Fabio Eboli, 2018. "Climate Change and Adaptation: The Case of Nigerian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(4), pages 787-810, April.
    8. Franziska Schuenemann & James Thurlow & Stefan Meyer & Richard Robertson & Joao Rodrigues, 2018. "Evaluating irrigation investments in Malawi: economy†wide impacts under uncertainty and labor constraints," Agricultural Economics, International Association of Agricultural Economists, vol. 49(2), pages 237-250, March.
    9. Tewodros Negash Kahsay & Onno Kuik & Roy Brouwer & Pieter Van Der Zaag, 2017. "The Economy-Wide Impacts Of Climate Change And Irrigation Development In The Nile Basin: A Computable General Equilibrium Approach," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-30, February.
    10. Delpiazzo, Elisa & Parrado, Ramiro, 2016. "Analyzing the coordinated impacts of climate policies for financing adaptation and development actions," Conference papers 332737, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Alvaro Calzadilla & Katrin Rehdanz & Richard S.J. Tol, 2008. "The Eonomic Impact Of More Sustainable Water Use In Agriculture: A Computable General Equilibrium Analysis," Working Papers FNU-169, Research unit Sustainability and Global Change, Hamburg University, revised Dec 2008.
    12. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2011. "The GTAP-W model: Accounting for water use in agriculture," Kiel Working Papers 1745, Kiel Institute for the World Economy (IfW Kiel).
    13. James Lennox & Ramiro Parrado, 2015. "Capital-embodied Technologies in CGE Models," Working Papers 2015.02, Fondazione Eni Enrico Mattei.
    14. Delpiazzo, Elisa & Parrado, Ramiro & Standardi, Gabriele, 2017. "Extending the Public Sector in the ICES Model with an Explicit Government Institution," EIA: Climate Change: Economic Impacts and Adaptation 254041, Fondazione Eni Enrico Mattei (FEEM).
    15. Hua Zhong & Michael H. Taylor & Kimberly S. Rollins & Dale T. Manning & Christopher G. Goemans, 2019. "Who pays for water scarcity? Evaluating the welfare implications of water infrastructure investments for cities," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 63(3), pages 559-600, December.
    16. Tewodros Negash Kahsay & Onno Kuik & Roy Brouwer & Pieter Zaag, 2018. "The Transboundary Impacts of Trade Liberalization and Climate Change on the Nile Basin Economies and Water Resource Availability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 935-947, February.
    17. Lorenza Campagnolo & Carlo Carraro & Fabio Eboli & Luca Farnia & Ramiro Parrado & Roberta Pierfederici, 2018. "The Ex-Ante Evaluation of Achieving Sustainable Development Goals," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(1), pages 73-116, February.
    18. Jason F.L. Koopman & Onno Kuik & Richard S.J. Tol & Roy Brouwer, 2015. "Water Scarcity From Climate Change And Adaptation Response In An International River Basin Context," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-22.
    19. Zvi Baum & Ruslana Rachel Palatnik & Iddo Kan & Mickey Rapaport-Rom, 2016. "Economic Impacts of Water Scarcity Under Diverse Water Salinities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-22, March.
    20. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    More about this item

    Keywords

    Environmental Economics and Policy;

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemei:251813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.